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Abstract. We propose a general framework for differential and linear
cryptanalysis of block ciphers when the block is not a bitstring. We prove
piling-up lemmas for the generalized differential probability and the lin-
ear potential, and we study their lower bounds and average value, in
particular in the case of permutations of Fp. Using this framework, we
describe a toy cipher, that operates on blocks of 32 decimal digits, and
study its security against common attacks.
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1 Introduction

1.1 Motivations

While all well-known block ciphers are pseudo-random permutation families of
some set {0, 1}n where n = 64 or 128, there exists some applications where a
pseudo-random permutation of an arbitrary set is needed. For example, if one
wants to add an encryption layer within a system that stores its data in decimal
value, this encryption layer should encrypt decimal numbers without any expan-
sion, and this is not possible if a binary encoding of these numbers is encrypted
by a standard block cipher. Another example appears in some public-key cryp-
tography protocols, where one assumes the existence of some ideal permutation
or of some ideal cipher, that permutes elements of a set of cardinality other than
2n, for example the set of points of an elliptic curve.

Moreover, while there are many studies on the cryptographic properties of
boolean functions, and some studies on the cryptographic properties of addition
modulo 2n, no published results really looks into the generalization of these bi-
nary properties to the case where the characteristic is ` > 2. A general framework
for differential and linear cryptanalysis for arbitrary characteristic may bring a
new insight into the understanding of these attacks.

?? This work is supported in part by the French government through X-Crypt, in part
by the European Commission through ECRYPT.



1.2 Previous work

Black and Rogaway [3] have described how to design block ciphers that permute
arbitrary domains. Hence our problem already has a solution. However, their
techniques are modes of use of conventional ciphers, and we prefer to study the
feasibility of ad hoc designs.

The generalization of differential cryptanalysis to any abelian group is classi-
cal, and this generalization appears in the study of ciphers using addition modulo
2n [10, 16, 11] but also more exotic operations like the ⊗ in IDEA [10] or multi-
plication in Multiswap [4]. Nyberg [13] wrote one of the few papers that study
S-boxes over Fp with respect to differential cryptanalysis1. The generalization
of linear cryptanalysis is a new result, the only similar work being the Z4-linear
cryptanalysis by Parker and Raddum [15].

Our toy cipher we describe is based on a straightforward adaptation of Rijn-
dael [6], which is a typical example of key-alternating cipher [8].

1.3 Our setting

To study the differential cryptanalysis of a function f : G → G′, we need to
provide both G and G′ with a structure of abelian group. The number of elements
in these groups will be denoted q and q′. The minimal integer ` such that all
elements of these groups are of `-torsion (i.e. `.G = `.G′ = {0}) will be called
the characteristic of f and be a key parameter for linear cryptanalysis. We will
investigate more deeply the prime case, where G = G′ = Fp.

1.4 Outline of the paper

Sections 2 and 3 explain how differential and linear cryptanalysis are generalized.
We give definitions and basic properties, then we show that piling-up theorems
exist, and therefore these techniques can be used to evaluate the security of
a whole cipher, based on the study of its non-linear components. We also show
that in the prime case, optimality is equivalent to f being a degree 2 polynomial.
Finally, we give an estimation of the non-linearity of a random function, with
respect to differential cryptanalysis.

In section 4 we describe our cipher TOY100. We explain the design criteria.
Because our toy cipher has non-prime characteristic ` = 100, some technical
difficulties appear in the study of the linear part of the cipher. We solve the
problem for our specific example. Section 5 is a security analysis of TOY100.

2 Differential cryptanalysis

2.1 Definition

Introduced by Biham and Shamir in [2], differential cryptanalysis is one of the
most useful techniques in modern cryptanalysis. The idea is to encrypt pairs of
1 But there is a small mistake in its proposition 7.
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plaintexts having a fixed difference, and to observe the differences between the
pairs of ciphertexts.

We recall that in our setting f is a function from G to G′, abelian groups of
cardinality q and q′. Let us define a q× q′ matrix ∆ that describes the action of
f over differences by ∆(f)a,b = #{x|f(x + a)− f(x) = b}.

The complexity of an attack by differential cryptanalysis is of order 1/DP (f)
where the differential probability DP (f) = D(f)/q is defined by:

D(f) = max
(a,b)∈G×G′\{(0,0)}

∆(f)a,b.

The exact value of D(f) being too expensive to compute, one usually com-
putes the exact values for the elementary functions used in f and combine these
values using piling-up theorems.

2.2 Properties valid for any group

Differential probability for the inverse. If f : G → G is bijective, then
∆(f−1) = t∆(f) and therefore D(f−1) = D(f).

Proof. If f(x + a)− f(x) = b, then f−1(y) + a = f−1(y + b) with y = f(x). ut

Parallel execution. If f is the parallel execution of functions f1 and f2, then its
differential properties are easily deduced from the differential properties of f1 and
f2. More precisely, if we define f over G1 ×G2 by f(x, y) = (f1(x), f2(y)), then
∆(f)(a1,a2),(b1,b2) = ∆(f1)a1,b1∆(f2)a2,b2 and D(f) = max(q2D(f1), q1D(f2)).

Sequential execution. If f is the sequential execution of two functions, the
differential properties cannot be directly combined, because the image of a uni-
form distribution of input pairs with fixed difference does not necessarily have
uniform distribution for all output pairs with given difference. The distribution
can be made uniform by adding a random key, and ciphers using this design are
named Markov ciphers [10]. In this setting, we compose the function f : G → G′,
the translation in G′ that we name ADD KEY, and the function g : G′ → G′′

to obtain hK = g ◦ADD KEY(K) ◦ f .

Theorem 1.
DP (hK) ≈ DP (f)DP (g)

if the following hypothesis hold:

– Stochastic equivalence. ∆(hK) does not depend heavily on K;
– Dominant characteristic for (a, c).

∑
b ∆(f)a,b∆(g)b,c ≈ maxb ∆(f)a,b∆(g)b,c.

– Independence. maxb ∆(f)a,b∆(g)b,c ≈ maxb,b′ ∆(f)a,b∆(g)b′,c.
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Proof. Let φa(x,K) = (x, f(x) + K, f(x + a)− f(x)). The restriction of φa to
the set of solutions (x, K) of the equation hK(x+a)−hK(x) = c is a one-to-one
mapping to the set of solutions (x, y, b) of the pair of equations g(y+b)−g(y) = c
and f(x+ a)− f(x) = b. Therefore the following formula over ∆ matrices holds:∑

K∈G′

∆(hK) = ∆(f)∆(g).

Under the first hypothesis, D(hK) ≈ 1
q′ max(a,b) 6=(0,0)

(
∆(f)∆(g)

)
a,b

. Now we
apply the second hypothesis to a pair (a, b) for which D(hK) ≈ 1

q′

(
∆(f)∆(g)

)
a,b

,
and then we apply the third hypothesis. ut

Lower bound. If D(f) = 1 then f is not bijective.

Proof. For any non-zero a,
∑

b∈G ∆(f)a,b = q, therefore all elements of the a-th
row of ∆(f) are equal to 1 and in particular ∆(f)a,0. ut

2.3 The case of Fp

All functions in Fp can be interpolated by a polynomial which is unique if its
degree is less than p. The degree of f has some impact on D(f).

Proposition 1. (i) D(f) = p is equivalent to f linear or constant.
(ii) D(f) = p− 1 is impossible.
(iii) If f has degree d ≥ 2, then D(f) ≤ d − 1. In particular, if f is of degree 2,

then D(f) = 1.
(iv) For all d between 2 and p − 1, there are polynomials of degree d, such as

D(f) = d− 1.

Proof. (i): Let a 6= 0 and b be such that ∆(f)a,b = p. Then f(x) = a−1bx+f(0).
(ii): Let a 6= 0 and b be such that ∆(f)a,b = p− 1. There exists b′ 6= b such that
∆(f)a,b′ = 1. But 0 =

∑
x∈G f(x + a)− f(x) = (p− 1)b + b′ = b′ − b.

(iii): f(x + a)− f(x)− b is a polynomial of degree d− 1, so it has at most d− 1
roots.
(iv): We want to find f such that f(x + 1) − f(x) is a polynomial with d − 1
distinct roots. First, we choose any polynomial with d− 1 distinct roots then we
write the equality between the coefficients. We obtain a triangular system with
a non-zero diagonal, which implies it is invertible. ut

Conjecture for the lower bound.

Conjecture 1. If D(f) = 1, then the degree of f is 2.

If we define the differential dfa(x) = f(x + a) − f(x), it has the property of
being a zero-sum function i.e.

∑
x∈G dfa(x) = 0. The hypothesis D(f) = 1 of our

conjecture is equivalent to ∀a 6= 0, dfa is bijective.
In spite of this simple formulation, and a computer-aided verification that it

is true for p ≤ 19, we could not prove this conjecture. However, if the following
lemma holds, then this conjecture is true, as shown in appendix A.5.
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Lemma 1 (Key lemma). If ϕ : Fp → Z satisfies
∑

y∈Fp
ϕ(y)2 = p − 1, and

∀x 6= 0,
∑

y∈Fp
ϕ(y)ϕ(x + y) = −1 then ∀x, ϕ(x) ∈ {0,±1}.

Average value. To find functions with high degree but low D(f), we can try
random functions. The following theorem evaluates the average value of D(f) and
its proof (in appendix A.1) contains upper bounds on the number of functions
with low or high D(f).

Theorem 2. Let us define z(p) = bΓ−1(p/(6 log p))c − 1 where as usual
Γ (z + 1) = z!, then

lim
p→∞

Pr[z(p) ≤ D(f) ≤ 3z(p)] = 1

It is possible to decrease the constant 3 to 2 (the proof will be in the full
version of the paper). There is no reason that prevents this result to be applied
to Z/qZ, except perhaps the human’s lack of taste for lengthy computations.
However, it is impossible to have really precise results on this subject, unless
one can explicit the dependence between the differentials of a function. Assuming
independence is the usual way to deal with this problem (see for example [8]),
but it is not true for small p.

2.4 The case of Z/qZ

The case where G is isomorphic to Z/qZ cannot be seen as a generalization of
the prime case for two reasons:

– there exist many functions that cannot be interpolated by polynomials
– even when this interpolation exists, the form of canonical interpolations is

tricky to define

The following theorem, proven in appendix A.2, shows that polynomials are a
negligible fraction of the functions over Z/qZ. For example, over Z/100Z there
are 2 · 1012 polynomials and 10200 functions.

Theorem 3. (i) Let q = p2 with p prime. Then the number of distinct polyno-
mials over Z/qZ is equal to p3p.

(ii) Let q = q1q2, with q1, q2 coprime. Then the number of distinct polymials over
Z/qZ is the product of this number over Z/q1Z and Z/q2Z.

If q = q1q2, with q1, q2 coprime, and if f is a polynomial, then its differential
properties need only to be studied over Z/q1Z and over Z/q2Z, as proved in the
following theorem. If it is not a polynomial, such a decomposition is not possible.

Theorem 4. Let f ∈ Z/qZ[X] and for i = 1, 2 fi ∈ Z/qiZ defined by fi(x) =
f(x) (mod qi). Then D(f) = D(f1)D(f2).

Proof. z → (z mod q1, z mod q2) is an isomorphism. ut
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3 Linear cryptanalysis

3.1 Definition

Linear cryptanalysis is a known-plaintext attack that was discovered just after
differential cryptanalysis [18, 17, 12]. It is based on the study of linear approxima-
tions of the cipher. Linear cryptanalysis has been defined for boolean functions:
a linear approximation of a function f is described by two masks (a, b) which
select respectively bits of the input and of the output. If we denote by 〈a|x〉
the dot product of a and x, then linear approximations are given by comparing
〈a|x〉 − 〈b|f(x)〉 for random x and 〈a|x〉 − 〈b|y〉 for random x and y.

Linear cryptanalysis can be generalized to the study of the functions f : G →
G′, if there is some integer q such that all elements of both groups are of `-torsion.
This condition implies that both G and G′ are isomorphic to a product of cyclic
groups of order dividing `. Under this condition and using this isomorphism, we
can define scalar products over G and G′ with output in Z/`Z, denoted 〈·|·〉.
And finally we define the scalar product on G×G′ by 〈a, b|x, y〉 = 〈a|x〉 − 〈b|y〉.
The generalization of linear cryptanalysis can be done using two approaches.

Bias from random behavior. For any pair (a, b) ∈ (G, G′), let us define the dis-
tribution vector Λ0(f)a,b = (#{x ∈ G | 〈a, b|x, f(x)〉 = u})u∈Z/`Z. The random
behavior is given by Sa,b;u = 1

q′#{(x, y) ∈ G×G′ | 〈a, b|x, y〉 = u}.
Therefore, if we define the bias ΛS(f)a,b;u = Λ0(f)a,b;u − Sa,b;u, then all

elements of this matrix sum up to zero
∑

u ΛS(f)a,b;u = 0 and its greatest term
is a measure of non-linearity.

L(f) = max
a,b 6=0,u

(ΛS(f)a,b;u)2

The complexity of the attack is expected to be of order 1/LP (f), where the
linear potential LP (f) = L(f)/q2.

Dual of differential cryptanalysis. The other approach generalizes the duality
between differential and linear cryptanalysis, as it has been done for example by
Chabaud and Vaudenay [5]. First, we need to define the characteristic function
of f , which is θf : G×G′ → {0, 1} such that θf (x, y) = 1 iff y = f(x). We also
define the convolutional product of two functions by (f∗g)(a) =

∑
x f(x)g(a+x).

As in Chabaud-Vaudenay, we can prove that (θf ∗ θf )(a, b) = ∆a,b.
Let us choose a `-th root2 of unity ξ ∈ C and define the transform of φ : X →

Y by φ̂(a) =
∑

x φ(x)ξ〈a|x〉. Note that φ̂(−a) and φ̂(a) are complex conjugates,

that ˆ̂
φ(x) = #Y.φ(−x), and also that (̂φ ∗ φ) = |φ̂|2 and therefore is real-valued.

By duality, we define λ(f)a,b = ̂(θf ∗ θf )(a, b) and λ(f) = max(a,b) 6=(0,0) λ(f)a,b.

2 Replacing −1 by a `-th root of unity is not a new idea. For example, it appeared as
footnote 4 of [1]. The fact that it is a different approach than computing the bias
was probably not noticed.
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Links between both approaches. In the binary case (i.e. ` = 2) we have ξ = −1
and L(f)a,b;1 = −L(f)a,b;0 therefore θ̂f (a, b) = 2L(f)a,b;0 and λ(f) = 4L(f).
When ` 6= 2, no such simple relation exists. For example, in Z/7Z, let us take
f(x) = x6 + x3 and g(x) = x6 + x3 + x2. Then L(f) = L(g) = 9 but λ(f) =
39.96 · · · while λ(g) = 26.19 · · · . The list of all possible values for Z/5Z and
Z/7Z is in appendix A.4.

Both approaches give some insight into the security of a cipher. However,
in the following, we mainly consider the measure of bias, which is easier to
implement as a concrete cryptanalysis.

3.2 Properties valid for any group

Main properties of Sa,b;u. When a, b are fixed, Sa,b;u is either 0 or another
fixed value denoted Sa,b. The set Ta,b = {u|Sa,b;u 6= 0} is a subgroup of Z/`Z,
and q′ = Sa,b #Ta,b.

Proof. If 〈a, b|x0, y0〉 = u0 and 〈a, b|x1, y1〉 = u1, then 〈a, b|x0 + x1, y0 + y1〉 =
u0 + u1. Therefore, the sets of solutions of the equations 〈a, b|x, y〉 = u can be
translated one to another. ut

The inverse. If f : G → G is bijective, then ΛS(f−1)a,b;u = ΛS(f)a,b;−u and
therefore L(f−1) = L(f).

Parallel execution. If f is the parallel execution of functions f1 and f2 of same
characteristic, then bias matrices are combined by convolution. More precisely,
if we define f over G1×G2 by f(x, y) = (f1(x), f2(y)), then Λ0(f)(a1,a2),(b1,b2) =
Λ0(f1)a1,b1 ∗Λ0(f2)a2,b2 . If the sets Ta1,b1 and Ta2,b2 are equal, then this formula
also applies to ΛS .

Proof. Note that the hypothesis on the sets Tai,bi
is mandatory. A simple coun-

terexample is G1 = G2 = Z/100Z, f1(x) = 2x, f2(x) = x, a1 = 5, a2 = 10,
b1 = b2 = 0 and 〈.|.〉 is the usual multiplication over Z/100Z.

To prove the formula for Λ0, we decompose 〈a, b|x, f(x)〉 = u into its com-
ponents 〈a1, b1|x1, f1(x1)〉 = v and 〈a2, b2|x2, f2(x2)〉 = u − v. Then we use the
following facts: SG1×G2

a,b;u =
∑

v SG1
a1,b1;u−vSG2

a2,b2;v
and

∑
v∈Ta,b

ΛG(f)a,b;v = 0. ut

Sequential execution. As for the differential cryptanalysis, we suppose we
have a Markov cipher. In this case, the following theorem, proven in appendix A.3
allows us to approximate the value of LP (hK), for hK = g ◦ADD KEY(K) ◦ f :

Theorem 5 (Piling-up for LP ).

LP (hK) ≈ LP (f)LP (g)

if the following hypothesis hold:
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– Stochastic equivalence. ΛS(hK)a,c;u+〈b|K〉 does not depend heavily on K;
– Dominant trail and independence.

max
a,b,c,u

Ta,b=Tb,c

∣∣∣∣∣∑
v

ΛS(f)a,b;u−vΛS(g)b,c;v

∣∣∣∣∣ ≈ max
a,bf ,bg,c,u,v

∣∣ΛS(f)a,bf ;u−vΛS(g)bg,c;v

∣∣
Piling-up λ(f). This other approach also has composition results. For exam-
ple, we prove in appendix A.3 a piling-up lemma that shows that under some
appropriate hypothesis, λ(hK)/q2 ≈ λ(f)/q2λ(g)/q′

2.

3.3 The case of Fp

Functions over Fp that have optimal resistance against linear cryptanalysis have
degree 2.

Theorem 6. Let G be a group of cardinality p, with p prime. If L(f) = 1, then
f can be interpolated by a polynomial of degree 2.

Proof. Let us work in PG(2, p), the projective plane over Fp. Let

E(f) = {x, f(x), 1|x ∈ Fp} ∪ (0, 1, 0).

E(f) is a p + 1-arc, i.e. a set of p + 1 points, no three of which are collinear.
According to the corollary of theorem 10.4.1, p.236, of [9], a p+1-arc in PG(2, p)
with p odd, is a conic. So

E(f) = {(x0, x1, x2)|a00x
2
0 + a11x

2
1 + a22x

2
2 + a01x0x1 + a02x0x2 + a12x1x2 = 0}

But (0, 1, 0) ∈ E(f), therefore a11 = 0.
And (a01,−a00, 0) ∈ E(f), therefore (a01,−a00, 0) ≡ (0, 1, 0). Therefore a01 = 0.
If a12 = 0, (0, f(0), 1) ∈ E(f) implies {(0, y, 1)|y ∈ Fp} ⊂ E(f). Therefore a12 is
not null and f is described by a degree 2 polynomial. ut

3.4 Relation with the linear cryptanalysis over Z/4Z

Matthew Parker and Haavard Raddum have suggested a generalization of linear
cryptanalysis over Z/4Z in [15]. Their method allows better approximations of
the S-boxes but the combination of those approximations is less efficient than
in classical linear cryptanalysis. Their method is a very particular case of ours,
where a 2n-bit string is seen as an element of (Z/4Z)n.

4 A Toy Cipher: TOY100

4.1 High-level description

In this section we aim at showing that it is possible to design a secure and
efficient block cipher that does not use words of n bits as a block.
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The structure of the cipher is quite similar to Rijndael [6, 7]. It works on
blocks of 32 decimal digits, with keys of the same size. It is composed of 11
identical rounds, followed by a slightly different final round. A block A is divided
in 16 subblocks, each subblock being a number between 0 and 99. A block is
represented as a 4 × 4 matrix A = (ai,j)i,j∈{0,...,3}, of which each element is a
subblock. Round r (r = 0 . . . 10) is made out of the application of a key addition
layer σ[Kr] which adds modulo 100 a subkey to each subblock, followed by the
parallel application, denoted γ, of a certain S-box to each subblock, and finally
a linear function θ that mixes the subblocks. The last round has a final key
addition instead of the linear layer, so it is written as σ[K11] ◦ γ ◦ σ[K12].

4.2 Our Choice of Components

The S-Box. The S-box was chosen to satisfy D(f) ≤ 5 and L(f) ≤ 52. An
iteration of RC4-100 consists, being given an array of 100 numbers, and two
pointers i, j, to increment i, add t[i] to j (modulo 100) then exchange t[i] and t[j].
Starting from the permutation identity, i = 1, j = 0, we checked the permutation
every 100 iterations until we find a permutation satisfying the criteria on D(f)
and L(f). The permutation found is the 3 409 672th, after 340 967 200 iterations
of RC4-100.

This function has D(f) = 5, L(f) = 52 and λ(f) = 734.122 · · ·

0 1 2 3 4 5 6 7 8 9
0 0 67 12 32 30 53 34 37 71 38
10 42 94 58 95 78 35 6 22 36 81
20 61 93 43 72 25 27 15 69 90 47
30 1 91 84 86 24 79 66 40 10 33
40 59 8 11 48 28 76 73 82 39 51
50 45 13 97 74 9 7 52 88 62 96
60 23 29 3 4 75 56 5 64 17 49
70 68 77 80 55 85 92 44 21 98 50
80 20 31 65 83 19 57 41 70 18 99
90 89 60 46 26 63 14 87 16 54 2

The Diffusion Function The diffusion function θ is composed of two similar
parts, MixColumns and MixRows.
First, we define a function Mix that takes 4 subblocks as an input:

Mix


a1

a2

a3

a4

 =


a4 + a1 + a2

a1 + a2 + a3

a2 + a3 + a4

a3 + a4 + a1
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Mix is bijective and its inverse is:

Mix−1


a1

a2

a3

a4

 =


S − a3

S − a4

S − a1

S − a2


with S = (a1 + a2 + a3 + a4)/3.

MixColumns (resp. MixRows) consists in applying Mix to each column (resp.
row). Note that MixColumns and MixRows commute.

We define the subblock weight of a block B as the number of non-zero sub-
blocks, and we denote it as SW (B). The branch number is a measure of the
efficiency of a diffusion layer.

Definition 1. The branch number of a diffusion function f , BN(f) is defined
as:

BN(f) = min
B 6=0

(SW (B) + SW (f(B))

Proposition 2.
BN(θ) = 6

Proof. The first step of the proof enumerates the cases where there are one or
two non-zero subblocks in the input B, and show that there will be at least six
non-zero subblocks in θ(B); it is the same for θ−1(B). We conclude by observing
that if b21 = b22 = b23 = 50 and the other subblocks of B are 0, then C = θ(B)
is such that c12 = c22 = c32 = 50 and the other subblocks are 0. ut

The Key Schedule The key expansion is very similar to the one of AES. As
always, additions are modulo 100. The first round key K0 is the key itself. For
the following rounds, we iterate as follows:

kr+1
0,j = kr

0,j + S(kr
3,(j+1) mod 4) + 3r (j ∈ {0, 1, 2, 3})

kr+1
i,j = kr

i,j + kr+1
i−1,j (i ∈ {1, 2, 3}, j ∈ {0, 1, 2, 3})

5 Security Analysis of TOY100

5.1 Differential Cryptanalysis

The best differentials we found rely on the following property of the linear layer:
δ −δ 0 0
−δ δ 0 0
0 0 0 0
0 0 0 0

 θ−→


0 0 0 0
0 0 0 0
0 0 δ −δ
0 0 −δ δ

 (1)
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We estimated the probability of these differentials for n = 2, 3, 4, 5, 6. That is to
say, we computed

max
∆0,∆n∈{1,...,99}

∑
∆1,...,∆n−1∈{1,...,99}

Π(∆0 → ∆1)2 · ... ·Π(∆n−1 → ∆n)2

108n
, (2)

where Π(∆i → ∆j) := ∆(f)∆i,∆j
·∆(f)−∆i,−∆j

. Remark that our choice of the
linear transform makes the“modified difference distribution table”Π particularly
important. There is always some “interaction” between the linear transform and
the S-box regarding resistance against differential (and linear) cryptanalysis, but
it is rarely so explicit.

Our results are given in Table 1. Note that the probabilities given are only
lower bounds, as other characteristics exist for the same differential; however
they have more active S-boxes, so we expect their contribution to the overall
probability to be small. Such n-round differential can be used in an attack on

Table 1. Estimated probability for the best n-round differential

# Rounds n Best Probability

2 4.05 · 10−11

3 2.83 · 10−16

4 2.61 · 10−21

5 2.72 · 10−26

6 3.47 · 10−31

n+1 rounds. This way we can attack up to 6 (and maybe 7) rounds. Details are
given in appendix B.1.

5.2 Linear Cryptanalysis

The best linear characteristic we found relies on the same type of observation as
the one used for differential cryptanalysis.

Namely, θ transforms mask


α −α 0 0
−α α 0 0
0 0 0 0
0 0 0 0

 into mask


0 0 0 0
0 0 0 0
0 0 α −α
0 0 −α α

 .

The piling-up lemma can be iterated, so for an (n + 1)-round characteristic
we have ∑

K1,...,Kn∈ (Z/100Z)16

ΛS(hK1,...,Kn)a,c;u+b1K1+...+bnKn

=
∑

v1,...,vn∈Z/100Z

ΛS(ρn+1)a,bn;u−v1−...−vn
·

ΛS(ρn)bn,bn−1;vn
· . . . · ΛS(ρ1)b1,c;v1

(3)

11



where ρi = γ · θ (i 6= n + 1) and ρn+1 = γ.
This equation holds under the hypothesis that

Sa,bn
= Sbn,bn−1 = ... = Sb1,c. (4)

Informally, equation (3) gives the average bias taken over all n-tuples of round
keys (the first and last round keys are not considered here; they only contribute
to the linear equation by a constant, which is unknown). Note that for the
equation to be useful for linear cryptanalysis, it is required that the characteristic
roughly equally holds for all keys. This hypothesis is common; it is known as
hypothesis of stochastic equivalence [10, 14]. We computed the maximum of (3)
over all possible (n + 3)-uples (a, b1, ..., bn, c;u), for various numbers of rounds.
The maxima we found correspond to a = b1 = ... = bn = c = 10 and u = 0. We
note that condition (4) is satisfied. Detailed figures are given in Appendix B.2.
Taking the first and last round keys into consideration, the corresponding linear
approximation for n + 1 rounds of the cipher is

10 · (c33 + c44 − c34 − c43)− 10 · (p11 + p22 − p12 − p21)

=
bn+1

2 c∑
i=0

10(k2i
11 + k2i

22 − k2i
12 − k2i

21) +
dn+1

2 e∑
i=1

10(k2i−1
33 + k2i−1

44 − k2i−1
34 − k2i−1

43 ),

(5)

if r is odd; c33 + c44 − c34 − c43 must be replaced by c11 + c22 − c12 − c21 if it is
even.

5.3 Structural Attacks

The diffusion layer of our cipher operates on well-aligned blocks, which could
make it vulnerable to structural attacks. We explored truncated differential,
impossible differential, and square attacks. The best such attack we found is a
square-like attack, which can be used for a practical cryptanalysis of up to 4
rounds of TOY100. Details are given in appendix B.3.

6 Conclusion

In this paper we extended usual block cipher theory over Zn
2 to a more general

framework in which the input and output spaces are arbitrary abelian groups.
We studied quite extensively how differential and linear cryptanalysis apply in
this context. We observe that many concepts, such as differential and linear
parameters of a function or piling-up lemmas, can be generalized. Moreover,
constructing a cipher by using the classical key-alternating paradigm still seems
to be appropriate.

However several problems remain unsolved. The link between the differential
parameter D(f) and linear parameters L(f) and λ(f) should be investigated.
Constructing functions with good such parameters, without using some kind of

12



random search, is an open problem as well. A formalization of the “special role”
of elements of small characteristic is also a goal for further research. Finally, our
toy cipher would deserve a more consequent cryptanalytic effort.
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A Proofs

A.1 Average value of D(f) in the prime case

We prove theorem 2.
We note f<−1>(y) the preimage of y and we define the function bp (biggest

preimage) as bp(f) = maxy #f<−1>(y).
If df1 = dg1, then f − g is a constant. Moreover, bp(df1) ≤ D(f). Therefore,

the function f → (df1, f(0)) is injective from the set of functions with D(f) < k
to the product of the set of functions with bp < k by G.

We define Ck,p as
(

p
k

)
(p− 1)p−k.

Using the precedent remark and lemma 2 just below, we deduce that:

Pr[D(f) < k] ≤ p1−p#{f | bp(f) < k} ≤ p(1− Ck,p

pp
)p

z(p) satisfies z(p)! ≤ p
6 log p

< (z(p) + 1)!

Then Cz(p),p ∼
pp

ez(p)!

For p big enough, we have
Cz(p),p

pp ≥ 2 log p/p and therefore

lim
p→∞

Pr[D(f) < z(p)] = 0

If D(f) > 3z(p) there is an x such that bp(dfx) > 3z(p). But knowing x, dfx,
and f(0) determines uniquely f .

Therefore Pr[D(f) > 3z(p)] ≤ p2−p#{f | bp(f) > 3z(p)}.
Using lemma 2 just below, we obtain that Pr[D(f) > 3z(p)] ≤ p3−pC3z(p),p.
Using Stirling’s formula, we deduce:

lim
p→∞

Pr[D(f) > 3z(p)] = 0.

Lemma 2. #{f | bp(f) = k} ≤ pCk,p and #{f | bp(f) < k} ≤ pp(1− Ck,p

pp )p.

14



Proof. First, we remark that #{f | the cardinality of the preimage of i = k} =
Ck,p

(i) If bp(f) = k then it exists i ∈ G such as #f<−1>(i) = k. We conclude
using the above remark and the fact that the cardinality of an union is upper-
bounded by the sum of cardinalities.

(ii) If bp(f) < k then for all y we have #{x | f(x) = y} < k, and also
#{f |#f<−1>(y) < k} ≤ pp −#{f |#f<−1>(y) = k} ≤ pp(1− Ck,p

pp ).
Those events are anti-correlated, i.e. if an element has a small preimage, then

the probability that the other elements have also a small preimage is smaller. So
we can bound the global probablity by the product of probabilities.

Therefore

#{f | bp(f) < k} ≤ pp

(
1− Ck,p

pp

)p

ut

A.2 Counting polynomial over Z/qZ

We prove theorem 3.
(i): Let P be a polynomial over Z/qZ. We can write P in the form: P (X) =

A(X)(Xp − X)2 + B(X)p(Xp − X) + C(X)(Xp − X) + pD(X) + E(X) with
A,B,C, D, E polynomials such as B,C,D,E have degree at most p − 1 and
coefficients between 0 and p− 1.

We want to prove that

∀x ∈ Z/qZ P (x) = 0 (mod p2) ⇔ C = D = E = 0

Only the direct sense is difficult. Clearly, E = 0 because the equation is also
true modulo p. We remark that Q(xp + y) = Q(y) (mod p).
Then, we have P (p + y) = C(y)(yp − y) − pC(y) + pD(y) (mod p2). And 0 =
P (P + y)− P (y) = −pC(y) (mod p2). Therefore C = 0 and D = 0.

(ii) We define the function φ from Z/qZ[X] to Z/q1Z[X] × Z/q2Z[X] as
φ(P ) = (P1, P2) such that Pi(x) = P (x) (mod qi). The function φ is well-defined
and bijective.

A.3 Piling-up for linear cryptanalysis

Piling-up for bias-based approach. We prove theorem 5.
Let φa,c(x,K) = (x, f(x) + K, 〈a, c|x, hK(x)〉). For any b, φa,c is a bijec-

tion from the set of solutions (x, K) of the equation 〈a, c|x, hK(x)〉 = u + 〈b|K〉
onto the set of solutions (x, y, v) of the equations 〈a, b|x, f(x)〉 = u − v and
〈b, c|y, g(y)〉 = v. Therefore, for any b, we have a sort of generalized matrix
product

∑
K Λ0(hK) = Λ0(f)Λ0(g) where the elements of these matrix are mul-

tiplied by convolution with respect to u. More precisely,∑
K∈G′

Λ0(hK)a,c;u+〈b|K〉 =
∑

v

Λ0(f)a,b;u−vΛ0(g)b,c;v.

15



We will prove now that the formula remains true translated to ΛS , for any b
such that Ta,b = Tb,c. Both sides are zero if u /∈ Ta,b, therefore we suppose that
u ∈ Ta,b.

First, we recall that
∑

v∈Ta,b
ΛS(f)a,b;v = 0. On one hand, we compute∑

v Λ0(f)a,b;u−vSb,c;v =
∑

v∈Tb,c
Λ0(f)a,b;u−vSb,c = q′ Sb,c, and also, because

Ta,b is a group and 〈c|y〉 ∈ Ta,b, we compute
∑

K Sa,c;u+〈b|K〉 =
∑

v Sa,b;v#{y |
〈c|y〉 = u− v} = Sa,b

∑
v∈Ta,b

#{y | 〈c|y〉 = u− v} = q′ Sa,b.

Therefore

∑
K∈G′

ΛS(hK)a,c;u+〈b|K〉 =
∑

v

ΛS(f)a,b;u−vΛS(g)b,c;v.

We need the additional hypothesis that there exists some b such that Ta,b =
Tb,c. This is true if G = G′ = G′′, because 〈a, a + c|x, y〉 = 〈a + c, c|x− y, x〉 and
therefore Ta,a+c = Ta+c,c. It follows that:

LP (hK) = max
a,c,u

(
ΛS(hK)a,c;u

q

)2

≈ max
a,b,c,u

Ta,b=Tb,c

(∑
v ΛS(f)a,b;u−vΛS(g)b,c;v

qq′

)2

≈ max
a,bf ,bg,c,u,v

(
ΛS(f)a,bf ;u−v

q

ΛS(g)bg,c;v

q′

)2

= LP (f)LP (g)

Piling-up for duality-based approach. λ(hK)a,c =
∑

x,z ∆(hK)x,zξ
〈a,c|x,z〉.

If ∆(hK) does not depend heavily on K, then ∆(hK)x,z ≈ 1
q′

∑
y ∆(f)x,y∆(g)y,z.

If
P
y

∆(f)x,y∆(g)y,zξ〈a,b|x,y〉ξ〈b,c|y,z〉 ≈ 1
q′

P
yf ,yg

∆(f)x,yf ∆(g)yg,zξ〈a,b|x,yf 〉ξ〈b,c|yg,z〉,

then λ(hK)a,c ≈
∑
x,z

1
q′

1
q′

∑
yf ,yg

∆(f)x,yf
∆(g)yg,zξ

〈a,b|x,yf 〉ξ〈b,c|yg,z〉 which means

that λ(hK)a,c ≈ 1
q′2 λ(f)a,bλ(g)b,c and therefore

λ(hK)
q2

≈ λ(f)
q′2

λ(g)
q2
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A.4 A list of all triples D(f), L(f), λ(f) for small values of p.

This is a table of all possible values for non affine functions and for p = 5 and 7:
p D L λ example

5

1 1 5 x2

2 4 9.472 · · · x4 + 2x2

2 4 13.090 · · · x3

3 4 16.708 · · · x4 + x2

3 9 19.472 · · · x4

7

1 1 7 x2

2 4 13.097 · · · x6 + x4 + 6x2

2 9 14 x4

2 4 14.185 · · · x6 + 6x4 + x2

2 9 14.454 · · · x5 + x2

2 4 14.603 · · · x6 + x4

3 4 14.603 · · · x6 + 3x4

2 4 15.207 · · · x6 + x5 + 4x2

2 4 16.899 · · · x6 + x2

3 4 16.899 · · · x6 + 5x5 + x4 + x3

2 9 17.048 · · · x6 + x5 + x3 + 5x2

3 9 17.048 · · · x6 + 3x4 + 2x3

2 9 17.234 · · · x6 + x4 + x3 + 3x2

3 4 17.234 · · · x6 + 5x2

3 4 18.256 · · · x6 + 3x3 + x2

3 9 18.256 · · · x6 + x4 + 3x3

2 4 18.591 · · · x5 + x4

3 4 18.591 · · · x5 + 2x2

3 9 18.591 · · · x5 + x4 + 2x3

2 9 19.076 · · · x6 + 5x3 + 5x2

2 4 19.195 · · · x6 + 2x4 + 5x2

3 4 19.195 · · · x6 + 2x5 + x4 + x3

3 9 19.195 · · · x6 + 2x5 + 4x3

2 4 21.640 · · · x6 + 2x5 + x3 + x2

3 4 21.640 · · · x6 + 2x3 + x2

p D L λ example

7

2 4 22.476 · · · x3

3 9 22.878 · · · x6 + 4x5 + x3 + x2

4 9 22.878 · · · x6 + +2x4 + 2x3

2 4 23.481 · · · x6 + 3x3

2 4 23.481 · · · x6 + 2x5 + x4 + 2x2

2 4 24.689 · · · x6 + 2x5 + 3x4

3 4 24.689 · · · x6 + 2x4 + x3 + x2

4 4 24.689 · · · x6 + 3x5 + x3

3 9 24.921 · · · x6 + 3x4 + 6x2

4 9 24.921 · · · x6 + 3x3 + 3x2

3 9 25.591 · · · x4 + x3

4 9 25.591 · · · x5 + 3x3 + x2

3 9 26.195 · · · x6 + x4 + x3

3 4 26.799 · · · x6 + 2x5

4 16 29.207 · · · x6 + 3x4 + x3

3 4 30.183 · · · x4 + 3x2

4 4 30.183 · · · x5

3 9 31.689 · · · x6 + 2x4 + x2

4 9 31.689 · · · x6 + 2x5 + x4 + 4x2

4 16 32.256 · · · x6 + x4 + 2x3 + 5x2

3 4 32.628 · · · x6 + 2x3

4 4 32.628 · · · x6 + 3x5 + x2

3 9 35.073 · · · x6 + x4 + x3 + x2

4 9 35.073 · · · x6 + 2x5 + 2x3

4 16 39.024 · · · x5 + x3

3 9 39.963 · · · x6 + x3

5 9 39.963 · · · x6 + x5 + 5x3

5 16 41.169 · · · x6 + x4 + x2

5 25 44.481 · · · x6

A.5 In the prime case, D(f) = 1 ⇒ L(f) = 1

We will use the following lemma, for which we did not find a proof.

Lemma 1 (Key lemma). If ϕ : Fp → Z satisfies ∀x 6= 0, (ϕ ∗ ϕ)(x) = −1,
and (ϕ ∗ ϕ)(0) = p− 1 then ∀x, ϕ(x) ∈ {0,±1}.

Let us fix f , a, and b. We denote η(u) = ΛS(f)a,b;u and σ = η ∗ η. Note
that

∑
u Sa,b;uξu = 0 and therefore θ̂f (a, b) =

∑
u η(u)ξu and also λ(f)a,b =∑

u,v η(u)η(v)ξu−v =
∑

v η(v)2+
∑(`+1)/2

u=1 (ξu+ξ−u)σ(u) which is a real number.
In general, the lower bound for D(f) is q/q′; if this lower bound is reached,

then the matrix ∆(f) if fully known: ∆(f)a6=0,b = q/q′, ∆(f)0,b 6=0 = 0, and
∆(f)0,0 = q, and therefore we can completely compute its transform: λ(f)a,b 6=0 =
q, λ(f)a6=0,0 = 0, and λ(f)0,0 = q2.
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Now, let us look at the case where G = G′ = Fp. If f is a polynomial of
degree 2, we can check that D(f) = L(f) = 1. We want to prove that D(f) =
1 ⇒ L(f) = 1.

Let us suppose that D(f) = 1, then the duality implies that λ(f)a,b 6=0 = p.
However, λ(f)a,b =

∑
v η(v)2+

∑`−1
u=1 σ(u)ξu. Since η(v) is an integer, the second

sum is also an integer. Because the (ξu)u=1...`−2 are linearly independent over Q,
the fact that

∑
u 6=0 σ(u)ξu is an integer implies that all σ(u) are equal to some

common value σ. Therefore
∑

v η(v)2 = p + σ.
We also know that

∑
v η(v) = 0 and therefore 0 = (

∑
v η(v))2 =

∑
v η(v)2 +

2
∑

u σ(u) = p(σ + 1) and we proved that σ = −1 and σ(0) = p− 1.
We apply the key lemma to the function η, which means that ΛS(f)a,b;u =

{0,±1}, and therefore L(f) = 1.

B Security Analysis of TOY100

B.1 Differential Cryptanalysis

A Key Recovery Attack The attack uses the differential described in Sec-
tion 5.1, followed by one round of key guess. More precisely, the differential is
followed by σ[Kn] · γ · σ[Kn+1]. The attack goes as follows:

(i) Encrypt N plaintext pairs (P, P + ∆0).
(ii) The corresponding ciphertext pairs that actually follow the differential are

equal on 12 words (of which the position is fixed). Consider only the pairs
satisfying this condition.

(iii) The key guess is performed on the 4 words of the last round key for which the
difference is non zero. A counter is set for each candidate. It is incremented
when the difference before the last S-box layer corresponding to the candidate
is θ(∆n).

(iv) After enough pairs have been considered, the most counted candidate is
selected. The remaining key material is retrieved using a similar attack or
by exhaustive key search.

Let T0 denote the event that 12 words of the output difference are 0, as specified
in step 2 of the attack. Let D be the event that the differential is followed. We
consider the 5-round differential, with D := Pr[D] ' 3 · 10−26. Then we have

Pr[T0] = Pr[T0|D] · Pr[D] + Pr[T0|¬D] · Pr[¬D]

' 1 · 3 · 10−26 + 10−24 · (1− 3 · 10−26)

' 10−24

(6)

The right 4-subblock subkey will be counted N ·D ' 3 ·10−26 ·N times. A wrong
4-subblock subkey will be counted N · P [T0] · 100−4 ' 10−32 · N times. Hence
the SNR of the attack is 3 · 106, and the subkey can be recovered using less than
2/D = 2/3 · 1026 pairs. The best way to retrieve the remaining part of the key
is exhaustive search.
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Applying the same attack for one more round is probably possible, but almost
requires the whole codebook. To the best of our investigations, more complex
variants of the attack do not significantly improve its efficiency.

Another Property of the Linear Layer The following property of the linear
layer, which corresponds to the branch number bound, seems promising:

0 0 0 0
50 50 50 0
0 0 0 0
0 0 0 0

 θ−→


0 50 0 0
0 50 0 0
0 50 0 0
0 0 0 0

 (7)

However this pattern can be used only if ∆(f)50,50 is big enough. For the function
we selected it is 0. We note here the particular role played by ∆(f)50,50. The
existence of such “specially important” elements in the matrix ∆(f) is related to
the fact that we are working over a ring. Other elements of small characteristic
can be important as well for the same kind of reason. In Table 2 we give elements
of ∆(f) corresponding to input and output differences which are multiple of 25;
we observe that all of them are small.

Table 2. Values of ∆(f)a,b when a and b have small characteristic.

(a, b) ∆(f)a,b

(25,25) 0
(25,50) 0
(25,75) 0
(50,25) 1
(50,50) 0
(50,75) 1
(75,25) 0
(75,50) 0
(75,75) 0

B.2 Linear Cryptanalysis

The following linear equation (equation 5 in section 5.2)

10 · (c33 + c44 − c34 − c43)− 10 · (p11 + p22 − p12 − p21)

=
bn+1

2 c∑
i=0

10(k2i
11 + k2i

22 − k2i
12 − k2i

21) +
dn+1

2 e∑
i=1

10(k2i−1
33 + k2i−1

44 − k2i−1
34 − k2i−1

43 ),

holds with probability 1/10 for a random permutation, and with probability
1/10 + ε for TOY100 parameterized by a random key, where |ε| is given in
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Table 3. Therefore it can be used to build a distinguisher, by identifying the
value of 10 · (c33 + c44 − c34 − c43) − 10 · (p11 + p22 − p12 − p21) occurring the
most often, and comparing its frequency of apparition to a certain threshold, in
order to distinguish both probability distributions. The data complexity of the
attack is O(ε−2). This distinguisher can be used in a key-recovery attack, by
performing key guesses on the first and/or last round key. Up to 7 rounds of the
cipher can be attacked this way, and we are close to an attack on 8 rounds. The
data and time complexity are O(ε−2).
Finally, we note that relying on property (7) to build a characteristic is not

Table 3. Estimated bias for the best (n + 1)-round linear characteristic

# Rounds n + 1 Best Bias

2 2.49 · 10−6

3 8.78 · 10−9

4 3.10 · 10−11

5 1.09 · 10−13

6 3.86 · 10−16

possible, as our S-box satisfies ΛS(f)50,50;0 = ΛS(f)50,50;50 = 0.

B.3 A Square-like Attack

Our square-like attack aims at the cipher

P (i) σ[K1]·γ·θ−−−−−−→ A(i) σ[K2]·γ·θ−−−−−−→ B(i) σ[K3]·γ−−−−−→ C(i) θ−→ D(i) σ[K4]−−−−→ E(i) γ·σ[K5]−−−−−→ F (i)

It exploits batches of 1004 plaintexts with the following structure:

P (i) =


p
(i)
11 p

(i)
12 p

(i)
13 p

(i)
14

p
(i)
21 p

(i)
22 p

(i)
23 p

(i)
24

p
(i)
31 p

(i)
32 p

(i)
33 p

(i)
34

p
(i)
41 p

(i)
42 p

(i)
43 p

(i)
44

 =


a(i) b(i) κ κ
c(i) d(i) κ κ
κ κ κ κ
κ κ κ κ

 ,

where (a(i), b(i), c(i), d(i)) takes every possible value. As the value of constants
does not matter for our attack, all κ’s denote constants that are not necessarily
equal.

20



Let us define:

Srs(x) := S(x + k1
rs)

m(i) := S11(a(i)) + S12(b(i))
n(i) := S21(c(i)) + S22(d(i))
o(i) := S11(a(i)) + S21(c(i))
p(i) := S12(b(i)) + S22(d(i))
x(i) := m(i) + n(i) = o(i) + p(i)

After the first round σ[k1] · γ · θ the data become:
x(i) x(i) p(i) o(i)

x(i) x(i) p(i) o(i)

n(i) n(i) S22(d(i)) S21(c(i))
m(i) m(i) S12(b(i)) S11(a(i))

 +


κ κ κ κ
κ κ κ κ
κ κ κ κ
κ κ κ κ


It is then easy to see that the state B(i) after the second round σ[k2] · γ · θ is
such that b

(i)
11 , b

(i)
12 , b

(i)
21 , b

(i)
22 are still active (i.e. take every value equally often).

This property is preserved after passing through σ[k3] · γ. In order to push the
distinguisher further, we use the following property of θ again:

D(i) = θ(C(i)) ⇒ d
(i)
33 + d

(i)
44 − d

(i)
34 − d

(i)
43 = c

(i)
11 + c

(i)
22 − c

(i)
12 − c

(i)
21 (8)

So we have ∑
1≤i≤1004

e
(i)
33 + e

(i)
44 − e

(i)
34 − e

(i)
43

=
∑

1≤i≤1004

(d(i)
33 + k4

33) + (d(i)
44 + k4

44)− (d(i)
34 + k4

34)− (d(i)
43 + k4

43)

=
∑

1≤i≤1004

d
(i)
33 + d

(i)
44 − d

(i)
34 − d

(i)
43

=
∑

1≤i≤1004

c
(i)
11 + c

(i)
22 − c

(i)
12 − c

(i)
21

=
∑

1≤i≤1004

c
(i)
11 +

∑
1≤i≤1004

c
(i)
22 −

∑
1≤i≤1004

c
(i)
12 −

∑
1≤i≤1004

c
(i)
21 = 0,

where the last equality results from the fact that c
(i)
11 , c

(i)
12 , c

(i)
21 and c

(i)
22 are active.

By guessing 4 words k5
33, k

5
34, k

5
43, k

5
44 of the last round key we can check

this property. The probability of a false alarm is 1/100, so about 4 batches of
1004 plaintexts are necessary to retrieve this part of the key. Besides it is clear
that our analysis holds for any “square of four words” of the plaintext. Hence
we can retrieve the remaining 12 subblocks using the same method. The global
complexity is about 16 · 1004 chosen plaintexts. The offline work is of the same
order of magnitude.
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