
Upper Bounds on Algebraic Immunity of
Boolean Power Functions

(Extended Abstract)

Yassir Nawaz1, Guang Gong1 and Kishan Chand Gupta2

1Department of Electrical and Computer Engineering
University of Waterloo

Waterloo, ON, N2L 3G1, CANADA
2Centre for Applied Cryptographic Research

University of Waterloo
Waterloo, ON, N2L 3G1, CANADA

ynawaz@engmail.uwaterloo.ca, G.Gong@ece.uwaterloo.ca,

kgupta@math.uwaterloo.ca

Abstract. Algebraic attacks have received a lot of attention in studying
security of symmetric ciphers. The function used in a symmetric cipher
should have high algebraic immunity (AI) to resist algebraic attacks. In
this paper we are interested in finding AI of Boolean power functions.
We give an upper bound on the AI of any Boolean power function and
a formula to find its corresponding low degree multiples. We prove that
the upper bound on the AI for Boolean power functions with Inverse,
Kasami and Niho exponents are b√nc + d n

b√nce − 2, b√nc + d n
b√nce

and b√nc+ d n
b√nce respectively. We also generalize this idea to Boolean

polynomial functions. All existing algorithms to determine AI and cor-
responding low degree multiples become too complex if the function has
more than 25 variables. In our approach no algorithm is required. The
AI and low degree multiples can be obtained directly from the given
formula.

Keywords: Algebraic attacks, Algebraic immunity, Inverse exponent,
Kasami exponent, Polynomial functions, Power functions, Niho expo-
nent.

1 Introduction

The idea behind the algebraic attacks is to express the cipher as a system of
multivariate equations whose solution gives the secret key. The complexity of
the attack depends on the degree of these equations. Therefore the existence of
low degree equations, to express a cipher, is crucial for algebraic attacks.

The algebraic attacks on stream ciphers composed of LFSR(s) and a non-
linear combining function f were proposed by Courtois and Meier in [8, 9]. The
authors presented several scenarios under which low degree equations exist for
ciphers using a combining function f with small number of inputs. These low
degree equations are obtained by producing low degree multiples of f , i.e., by

multiplying f with a low degree function g such that fg is of low degree. In [26]
Meier, Pasalic and Carlet reduced the scenarios (given in [8, 9]) under which
low degree equations may exist to two and showed that existence of low degree
equations is equivalent to the existence of low degree annihilators of f or f + 1.

Krause and Armknecht extended algebraic attacks to combiners with memory
in [2]. They proved that algebraic equations always exist for such combiners and
also gave an upper bound on the degree of such equations in terms of their input
size and memory. In [10] Courtois further extended these attacks to combiners
with memory and several outputs and provided an upper bound on the degree
of equations for such combiners in terms of the size of their input, output and
memory. An improvement on the algebraic attacks called fast algebraic attacks
was presented in [7]. These attacks have been further examined in [3, 21].

The first algebraic attack on a block cipher was discussed in [30]. In [11]
Courtois and Pieprzyk showed that AES can be attacked by solving a system of
quadratic equations. This is possible because the only nonlinear component in
AES, i.e., the S-box, can be expressed as a system of quadratic Boolean equa-
tions. They also introduced a definition of the resistance of the S-box to algebraic
attacks based on the number and type of equations that describe the S-box. Low
degree equations that describe the S-box are again essential for the low complex-
ity of the algebraic attack. Cheon and Lee [6] used this definition to determine
the resistance of S-boxes (based on Gold, Kasami and inverse exponents) against
algebraic attacks. However their results have been disputed by Courtois et al.
in [12]. Another algebraic attack on AES was given in [27,28].

Since the existence of low degree equations for simple combiners, combiners
with memory, and S-boxes is important for algebraic attacks, Armknecht com-
bined the three cases in [1]. He showed that finding low degree equations for
simple combiners, combiners with memory, and S-boxes can be reduced to the
same problem of finding low degree annihilators.

In other direction there is increasing interest in the construction of Boolean
functions with highest AI. So far there are only three known constructions [5,
14, 15] that can acheive maximum possible AI dn

2 e, where n is the number of
inputs to the function. But the constructed function lacks certain cryptographic
properties making it unsuitable to be used in a cryptosystem.

Except [27] all other techniques for finding the low degree equations have
been developed from the theory of Boolean functions. Even, functions and S-
boxes designed over finite field F2n , n > 2 are analyzed according to this ap-
proach. We can refer to them as polynomial functions or mappings. For example
the filter function f : F216 → F2 used in the stream cipher SFINKS [4] is a
component of the inverse mapping in F216 . S-box used in AES [13] and stream
cipher SNOW [22] consists of inverse mapping in F28 . A power mapping from
F2n to F2n can be decomposed into n component functions, from F2n to F2,
called Boolean power functions. In other words a Boolean power function is a
monomial trace function which will be introduced later.

In this paper we use the theory of polynomial functions to analyze the AI of
Boolean power function. This approach allows us to obtain meaningful results

that are very difficult to obtain from the theory of Boolean functions. For exam-
ple we derive upper bounds on the AI of many Boolean power functions that
are much lower than the optimal upper bound presented in literature. We show
that AI of functions based on inverse, Kasami and Niho exponents decreases
drastically as n increases. More over the existing algorithms to determine the AI
(and finding low degree equations) of functions are very slow and are not prac-
tical for n > 25. Our approach has no such limitation. The AI of any Boolean
power function can be obtained directly from the formula regardless of the value
of n. Similarly the low degree equations required for the algebraic attack are also
obtained directly from the formula.

We believe that besides determining the AI of polynomial functions, the
approach presented in this paper can be used to analyze and design polynomial
functions with high AI along with other cryptographic properties.

2 Definitions and Preliminaries

In this section we provide the necessary preliminary material required in the
later sections.

2.1 Polynomial Functions

Let F2 be the finite field of two elements. We consider the domain of an n-
variable Boolean function to be the vector space (Fn

2 , +) over F2, where + is
used to denote the addition operator over both F2 and the vector space Fm

2 .
The Hamming weight of an integer i is the number of nonzero coefficients in

the binary representation of i and is denoted by H(i).
For a binary string, λ consecutive ones (1’s) preceded by zero and followed by

zero is called a run of ones of length λ. We are only interested in the total number
of runs of ones in a given binary string and not their length λ. Furthermore we
consider our runs of ones to be cyclic. For example 1100011110011111 has two
(not three) cyclic runs of ones.

Any n variable Boolean function h: Fn
2 → F2, can be uniquely represented as

a multivariate polynomial over F2, called the algebraic normal form,

h(x1, . . . , xn) = a0 +
∑

1≤i≤n

aixi +
∑

1≤i<j≤n

ai,jxixj + . . . + a1,2,...,nx1x2 . . . xn,

where the coefficients a0, ai, ai,j , . . . , a1,2,...,n ∈ F2. The degree of the Boolean
function h, denoted by deg(h), is the same as the degree of the multivariate
polynomial.

An (n,m) S-box (or vectorial function) is a map F : Fn
2 → Fm

2 and has
component functions f1, · · · , fm.

Let F2n be the finite field with 2n elements. A Trace function Tr: F2n → F2m ,
is given by [24, page 51]

Trn
m(x) =

n/m−1∑

i=0

x2mi

, x ∈ F2n .

A Cyclotomic coset Cs modulo 2n − 1 is defined as [25, page 104]

Cs = {s, s · 2, · · · , s · 2ns−1},
where ns is the smallest positive integer such that s ≡ s2ns(mod 2n − 1). The
subscript s is chosen as the smallest integer in Cs, and s is called the coset leader
of Cs. For example the cyclotomic cosets modulo 15 are:

C0 = {0}, C1 = {1, 2, 4, 8}, C3 = {3, 6, 12, 9}, C5 = {5, 10}, C7 = {7, 14, 13, 11},
where {0,1,3,5,7} are coset leaders modulo 15.

Any non-zero polynomial function f : F2n → F2, can be represented as a sum
of trace functions [20, page 178]:

f(x) =
∑

k∈Γ (n)

Trnk
1 (Akxk) + A2n−1x

2n−1, Ak ∈ F2nk , A2n−1 ∈ F2,

where Γ (n) is the set consisting of all coset leaders modulo 2n− 1, nk is the size
of the coset Ck, and Trnk

1 (x) is the trace function from F2nk → F2.
If f(x) is balanced , we have [20]

f(x) =
∑

k∈Γ (n)

Trnk
1 (Akxk), Ak ∈ F2nk , x ∈ F2n . (1)

The algebraic degree of f , denoted by deg(f), is given by the largest w such
that Ak 6= 0 and H(k) = w. There is a natural correspondence between Boolean
functions h and polynomial functions f [20, page 334]. Let {α0, . . . , αn−1} be a
basis for F2n , then this correspondence is given by:

h(x0, . . . , xn−1) = f(α0x0 + . . . αn−1xn−1).

A monomial or single trace term function f is a function that can be represented
by a single trace term, f(x) = Trn

1 (βxt) where β ∈ F2n and t is the coset leader
of Ct.

2.2 Algebraic Immunity AI
A Boolean function f is said to admit an annihilating function g, if f ∗ g = 0.
In [26] AI of f , denoted by AI(f), is defined as the minimum value of d such
that f or f + 1 admits an annihilating function of degree d.

Proposition 1 of [26] states that existence of the relations of form f ∗ g = h,
where g and h have degree at most d, means the existence of annihilating function
g′ of degree at most d (as f ∗(g+h) = 0). Therefore if for f we can find a function
g such that degree of f ∗ g is d then we can say that AI(f) ≤ d.

Fact 1. [8, Theorem 6.0.1] Let f be any Boolean function with n inputs. Then
there is a Boolean function g 6= 0 of degree at most dn

2 e such that f * g is of
degree at most dn

2 e.
Fact 1 shows that the upper bound on the AI of any Boolean function is

dn
2 e. To establish upper bound on the AI of a polynomial function f we will try

to find multipliers g such that the degree of f ∗ g is less than dn
2 e.

2.3 Monomial Trace Functions and Power Mappings

Monomial Trace functions are represented by a single trace term in polynomial
form. There are several compelling reasons to study the AI of monomial trace
functions. Any polynomial function can be expressed as a sum of monomial
trace functions. Therefore, for a constant multiplier g, the AI of any function
f is upper bounded by the maximum AI of any monomial trace function in its
polynomial representation. This bound may not always be tight but in certain
cases it can reveal the weakness of a function against algebraic attacks. Another
important class of functions are the Boolean power functions that can be repre-
sented as monomial trace functions. These functions are of interest as they can
be used as combining or filtering functions in stream ciphers [4]. These functions
can easily be constructed from a power mapping in a finite field. Power mappings
can be represented as F : x → xa in F2n and are classified based on exponent
a. Some famous exponents that have been studied for use in S-boxes are In-
verse, Gold, Kasami, Welch and Niho [16–18,23]. These mappings can easily be
decomposed into Boolean power functions or monomial trace functions:

Let {α0, ..., αn−1} and {β0, ..., βn−1} be the dual basis [25, page 117] of F2n .
Then an S-box based on power mapping (F : x → xa) can be represented
as F (x) =

∑n−1
j=0 Trn

1 (βjx
2it)αj , x 6= 0 and its component functions can be

represented as monomial trace functions of the form fj(x) = Trn
1 (βjx

2it), where
a ∈ Ct. It is conventional to represent monomial trace functions in the form
Trn

1 (βxt) where t is a coset leader of Ct. Note that we can write a = 2−it for
some i. So for any exponent a we can write the monomial trace function in the
standard forms as

f(x) = Trn
1 (βxa) = Trn

1 (βx2−it) = Trn
1 (β2i

xt),

since Trn
1 (x) = Trn

1 (x2). Next we find the AI of monomial trace functions.

3 Algebraic Immunity of Monomial Trace Functions

We provide the following proposition that will be used to derive upper bound
on the AI of monomial trace functions.

Proposition 1. Let f(x) = Trn
1 (βxt) and g(x) = Trm

1 (γxr) be monomial trace
functions, where x ∈ F2n , t and r are the coset leaders of cosets Ct and Cr.
The sizes of the cosets Ct and Cr are n and m respectively, m|n, and β ∈ F2n ,
γ ∈ F2m . Then

deg(f(x)g(x)) = max
0≤i<m

H(r + t2−i)

Proof. Note both f(x) and g(x) are n variable Boolean functions. From the
definition of trace function we can write (see also [19])

f(x)g(x) =
n−1∑

j=0

(βxt)2
j

m−1∑

l=0

(γxr)2
l

=
n−1∑

j=0

m−1∑

l=0

β2j

γ2l

xt2j+r2l

=
m−1∑

k=0

Trn
1 (γβ2k

xr+t2k

),

where the algebraic degree of f(x)g(x) is given by the largest w such that γβ2k 6=
0 and H(r + t2k) = w. Let k = m− i, we have t2k ≡ t2m−i ≡ t2−i mod 2n − 1.
Therefore

deg(f(x)g(x)) = max
0≤k<m

H(r + t2k) = max
0≤i<m

H(r + t2−i)

¤
Proposition 1 shows that we only need to add r to the members of coset Ct,

and the highest hamming weight of the resulting integers gives the maximum
possible degree of f(x)g(x).

In the following Theorem we derive an upper bound on the AI of monomial
trace functions based on a property of the exponent t, i.e., the number of runs
of 1’s in the binary representation of t.

Theorem 1. Let l = b√nc, k = n− bn
l cl and f(x) = Trn

1 (βxt), where β ∈ F2n

and t is the coset leader of Ct. Let g(x) = Trm
1 (xr), where

m =
{

l, k = 0;
n, 0 < k < l

, and r =

{
1 +

∑n
l −1
i=1 2il , k = 0

1 + 2k +
∑bn

l c−1
i=1 2il+k , 0 < k < l

.

Then
deg(f(x)g(x)) ≤ ul +

⌈n

l

⌉
− 1, (2)

where u is the number of runs of 1s in the binary representation of t.

To prove Theorem 1 we need the following two lemmas.

Lemma 1. r is a coset leader modulo 2n − 1.

Proof. The above can be established by examining the binary representation of
r.

Case: k = 0

︷ ︸︸ ︷
n

l l

r =
︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01

2r = 00 · · · 10 00 · · · 10 00 · · · 10 > r
· · ·
2l−1r = 10 · · · 00 10 · · · 00 10 · · · 00 > r
2lr = 00 · · · 01 00 · · · 01 00 · · · 01 = r

Therefore r is the coset leader modulo 2n − 1.

Case: 0 < k < l

︷ ︸︸ ︷
n

l l k

r =
︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01

2r = 00 · · · 10 00 · · · 10 00 · · · 10 00 · · · 10 > r
· · ·

l k l

2lr =
︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01 > r

· · ·
l l k

2nr =
︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01 = r

Therefore r is the coset leader modulo 2n − 1. ¤

Note: For k = 0, |Cr| = l and for 0 < k < l, |Cr| = n, where |Cr| is the size of
the coset Cr.

In Lemma 1 ︷︸︸︷ is used to indicate the size of a segment in bits. From here
onwards we will use ︷︸︸︷ to represent the size of the segment as before and ︸︷︷︸
to represent the number of 1’s in the segment

Lemma 2. H(r + t2−i) ≤ ul + dn
l e − 1, 0 ≤ i ≤ m− 1 and r, t, u, and l are as

defined in Theorem 1.

Proof. Consider the binary representations of r and t. In Lemma 1, r consists
of bn

l c identical l bit segments when k = 0. If k 6= 0, then k least significant bits
of r form an additional segment. All dn

l e segments have hamming weight 1. We
can segment t in the same way as r however these segments may or may not be
identical. We will represent a segment of r and t as r′ and t′ respectively. Now
let us consider the addition of r′ and t′. Initially we will restrict ourselves to the
case where the binary representation of t′ has at most one run. Now consider all
possible transitions in t′ with and without carry.

Case 1: 1 → 0 transition

j y j y ← carry

t′ =
︷ ︸︸ ︷
111 · · · 1 0 · · · 00 t′ =

︷ ︸︸ ︷
111 · · · 1 0 · · · 00

r′ = 000 · · · 00 · · · 01 r′ = 000 · · · 00 · · · 01
+ −−−−−−− + −−−−−−−

111 · · · 10 · · · 01 111 · · · 10 · · · 10

H(r′ + t′) = j + 1, j < l − 1 H(r′ + t′) = j + 1, j < l − 1

j y carry ← j y ← carry

t′ =
︷ ︸︸ ︷
111 · · · 11 0 t′ =

︷ ︸︸ ︷
111 · · · 11 0

r′ = 000 · · · 001 r′ = 000 · · · 001
+ −−−−−−− + −−−−−−−

111 · · · 111 000 · · · 000

H(r′ + t′) = j + 1, j = l − 1 H(r′ + t′) = 0, j = l − 1

Case 2: 0 → 1 transition

j y j y ← carry

t′ =
︷ ︸︸ ︷
000 · · · 0 1 · · · 11 t′ =

︷ ︸︸ ︷
000 · · · 0 1 · · · 11

r′ = 000 · · · 00 · · · 01 r′ = 000 · · · 00 · · · 01
+ −−−−−−− + −−−−−−−

000 · · · 10 · · · 00 000 · · · 10 · · · 01

H(r′ + t′) = 1, j < l H(r′ + t′) = 2, j < l

Case 3: No transition

← carry
t′ = 000 · · · 00 t′ = 000 · · · 00
r′ = 000 · · · 01 r′ = 000 · · · 01

+ −−−−− + −−−−−
000 · · · 01 000 · · · 10

H(r′ + t′) = 1 H(r′ + t′) = 1

carry ← carry ← ← carry
t′ = 111 · · · 11 t′ = 111 · · · 11
r′ = 000 · · · 01 r′ = 000 · · · 01

+ −−−−− + −−−−−
000 · · · 00 000 · · · 01

H(r′ + t′) = 0 H(r′ + t′) = 1
From the above cases it is clear that H(r′+ t′) achieves maximum value l for

1 → 0 transition (no carry case). For 0 → 1 transition the maximum value is 2
and when there is no transition it is 1.

Now consider the following complete binary representation of r and t.

l l l

t =
︷ ︸︸ ︷∗ ∗ · · · ∗ ∗

︷ ︸︸ ︷
1110 · · · 00

︷ ︸︸ ︷∗ ∗ · · · ∗ ∗
r = 0 0 · · · 0 1 0000 · · · 01 0 0 · · · 0 1

where * can be either 1 or 0.
First we assume that each segment t′ has at most one run. To get the maxi-

mum possible value of H(r + t2−i) each segment with a 1 → 0 transition must

contribute l number of 1’s to the sum. Since there are u number of 1 → 0 transi-
tions this adds up to ul number of 1’s. For u number of 1 → 0 transitions there
are at most u segments with 0 → 1 transitions, each contributing a maximum of
2 number of 1’s to the sum, i.e., 2u number of 1’s. All the remaining dn

l e − 2u
segments with no transitions can contribute at most single 1 to the sum. So
the total contribution is ul + 2u + dn

l e − 2u = ul + dn
l e. Now consider the first

segment from right to left that contains a 0 → 1 transition (right most segment
with a 0 → 1 transition). For this segment to contribute 2 number of 1’s to
the sum it must receive a carry, otherwise it will contribute a single 1 (see case
2). Since the right most segment never receives a carry, the only way a carry
can be generated between the right most segment and the right most segment
with a 0 → 1 transition is due to the presence of a segment with all 1’s (see all
cases without carry). However this all 1’s segment contributes zero number of
1’s to the sum. Therefore we subtract 1 from ul + dn

l e. Therefore the maximum
possible value of H(r + t2−i) is ul + dn

l e − 1.
Suppose a segment t′ has more than one runs. Then it must contain a 1 → 0

transition. In our analysis of segments with single runs, we assumed that each
segment with a 1 → 0 transition must contribute l number of 1’s to the sum. As
the size of the segment is l the contribution of a segment with more than one
runs must be less than or equal to the contribution of the segment with one run.
Therefore H(r + t2−i) is upper bounded by ul + dn

l e − 1
¤

Proof of Theorem 1.
The assertion follows directly from Lemma 1, Lemma 2 and Proposition 1.

¤
Remark 1. The significance of Theorem 1 is two fold. It gives the upper bound
on the AI of f , i.e., ul + dn

l e − 1 and it also gives the low degree multiplier g
(deg(g) = dn

l e). In Theorem 1 we give only one multiplier however we can get
2m−1 distinct non zero multipliers by taking g(x) = Trm

1 (βxr), where β ∈ F2m .
Note only m of them are linearly independent. Also note that these multipliers
can be computed directly from the formula in Theorem 1 with almost no effort.

Remark 2. From Fact 1 we know that AI of any function is at most dn
2 e. Let

v be the degree of f(x), then, to obtain a meaningful upper bound on AI,
deg(f(x)g(x)) ≤ min

(
v,

⌈
n
2

⌉)
. So we have the following condition on u,

u ≤ min

(
v − ⌈

n
l

⌉
+ 1

l
,

⌈
n
2

⌉− ⌈
n
l

⌉
+ 1

l

)
. (3)

For many cryptogaphically useful power mappings, u is very small. For exam-
ple, u = 1 for inverse, and u = 2 for Kasami, Gold, Welch and Niho. Therefore
Theorem 1 can give very useful bounds for these mappings. In fact in most cases
using the proof technique of Theorem 1 and exploiting the specific binary form
of each exponent, we can further improve this bound. Since functions with Gold
and Welch exponents have very small degrees (2 and 3 respectively) we will only
consider inverse, Kasami and Niho exponents in this paper.

4 Inverse Exponent

Inverse mappings x → x−1 in F2n can be decomposed in to n monomial trace
functions of the form Trn

1 (βx−1). The degree of the monomial trace functions
with inverse exponents is n − 1. The inverse exponent consists of a single run
of 1’s. From Theorem 1 its AI is upper bounded by l + dn

l e − 1. However in
Theorem 2 we show that for inverse function this bound can be improved to
l + dn

l e − 2.

Lemma 3. Let t = 2n−1 − 1. Then H(r + t2−i) ≤ l + dn
l e − 2, 0 ≤ i ≤ m − 1

and r is defined as in Theorem 1.

Proof. Consider the binary representation of r and t.

l l l

t =
︷ ︸︸ ︷
01 · · · 11

︷ ︸︸ ︷
11 · · · 11

︷ ︸︸ ︷
11 · · · 11

︷ ︸︸ ︷
11 · · · 11

r = 00 · · · 01 00 · · · 01 00 · · · 01 00 · · · 01
+ −−−−−−−−−−−−−−−−

10 · · · 01︸ ︷︷ ︸ 00 · · · 01︸ ︷︷ ︸ 00 · · · 01︸ ︷︷ ︸ 00 · · · 00︸ ︷︷ ︸
2 1 1 0

H(r + t) = dn
l e.

We can see that H(r + t2−i) is maximized when i = l − 2

l l l

t2−(l−2) =
︷ ︸︸ ︷
11 · · · 01

︷ ︸︸ ︷
11 · · · 11

︷ ︸︸ ︷
11 · · · 11

︷ ︸︸ ︷
11 · · · 11

r = 00 · · · 01 00 · · · 01 00 · · · 01 00 · · · 01
+ −−−−−−−−−−−−−−−−

11 · · · 11︸ ︷︷ ︸ 00 · · · 01︸ ︷︷ ︸ 00 · · · 01︸ ︷︷ ︸ 00 · · · 00︸ ︷︷ ︸
l 1 1 0

H(r + t2−(l−2)) = l + dn
l e − 2.

Therefore H(r + t2−i) ≤ l + dn
l e − 2, 0 ≤ i ≤ n− 1.

¤
Theorem 2. Let f(x) = Trn

1 (βx−1) and g(x) = Trm
1 (xr). Then

deg(f(x)g(x)) = l +
⌈n

l

⌉
− 2 (4)

where β,m, r and l are the same as defined in Theorem 1.

Proof. From Lemma 3, t = 2n−1 − 1. Since Trn
1 (x) = Trn

1 (x2), we have

f(x) = Trn
1 (βx−1) = Trn

1 (βx2t) = Trn
1 (β2n−1

xt). (5)

From Lemma 1, r is a coset leader and from Lemma 3, Eqn.(5) and Proposi-
tion 1, deg(f(x)g(x)) ≤ l + dn

l e − 2. ¤
This bound on AI is much less than theoretical optimal value dn

2 e for higher
values of n (see Table 1).

5 Kasami Exponents

An n variable monomial trace function with Kasami exponent, f(x), can be
defined as f(x) = Trn

1 (βxe), where e = 22s − 2s + 1, gcd(n, s)=1 and 1 ≤
s ≤ n

2 [23]. Note that f(x) is not balanced for all values of n. The algebraic
degree of f(x) is s + 1. We will only consider Kasami exponents that give the
highest algebraic degree. The Kasami exponent consists of 2 runs of 1’s in its
binary representation. From Theorem 1 its AI is upper bounded by 2l+dn

l e−1.
However in Theorem 3 we show that this bound can be improved to l + dn

l e.
Theorem 3. Let f(x) = Trn

1 (βxe), where e is the Kasami exponent that gives
highest algebraic degree, i.e., n+1

2 for n odd, n
2 for n ≡ 0 mod 4 and n

2 − 1 for
n ≡ 2 mod 4. Then

deg(f(x)g(x)) ≤ l +
⌈n

l

⌉

where β, l and g(x) are defined in Theorem 1.

Proof. Let t = e2−s, then

f(x) = Trn
1 (βxe) = Trn

1 (βxt2s

) = Trn
1 (β2n−s

xt), (6)

since Trn
1 (x) = Trn

1 (x2). The assertion follows directly from Lemma 5 (Proof is
given in appendix), Lemma 1, Eqn.(6) and Proposition 1. ¤
Remark 3. Though in Theorem 3 bound on AI is proved for Kasami exponent
that gives the highest algebraic degree, it is easy to prove that this bound holds
for any Kasami exponent. The proof is given in [29]. This bound is much lower
than the optimal bound dn

2 e for large n (see Table 1).

6 Niho Exponent

An n variable monomial trace function with Niho exponent [6,17], f(x), can be
defined as f(x) = Trn

1 (βxe), where e = 2s + 2
s
2 − 1, n = 2s + 1 when s is even

and e = 2s + 2
3s+1

2 − 1, n = 2s + 1 when s is odd. The degree of Niho function
in n variables is n+3

4 for n ≡ 1 mod 4 and n+1
2 for n ≡ 3 mod 4.

The Niho exponent consists of 2 runs of 1’s in its binary representation. From
Theorem 1 its AI is upper bounded by 2l + dn

l e − 1. However Theorem 4 show
that this bound can be improved to l + dn

l e. The proof of the theorem is very
similar to the proof of Kasami case, so we provide Theorem 4 without proof
(proof is given in [29]).

Theorem 4. Let f(x) = Trn
1 (βxe), where e is a Niho exponent. Then

deg(f(x)g(x)) ≤ l +
⌈n

l

⌉

where β, l and g(x) are defined in Theorem 1.

Table 1 shows how the upper bound on the AI of monomial trace functions
with Inverse, Kasami and Niho exponents decreases as n increases. Also note
that in [4], AI of inverse function for n = 16 is given as 6 which is confirmed
by our bound. This shows that our bound is tight for n = 16.

f n deg(f) Bound from Fact 1 (
⌈

n
2

⌉
) Our bound on AI

Inverse 16 15 8 6
36 35 18 10
100 99 50 18

Kasami 16 8 8 8
36 18 18 12
100 50 50 20

Niho 15 8 8 8
35 18 18 12
99 50 50 20

Table 1. AI bounds for Inverse, Kasami and Niho functions

7 Generalization to Polynomial Functions

Any balanced polynomial function f(x) can be represented by Eqn.(1) which is
reproduced here as

f(x) =
∑

k∈Γ (n)

Trnk
1 (Akxk), Ak ∈ F2nk , x ∈ F2n ,

which is simply a sum of monomial trace functions. If we only consider monomial
trace functions as multipliers the result in Theorem 1 can be generalized to all
balanced polynomial functions. Let uk be the number of runs of 1’s in the binary
representation of k and u = maxk∈Γ (n){uk} such that Ak 6= 0. Let g(x) be a
monomial trace function defined in Theorem 1. Then

deg(f(x)g(x)) ≤ ul +
⌈n

l

⌉
− 1.

To obtain a meaningful bound on AI of f , u must satisfy Eqn.(3). The above
result implies that AI of f is upper bounded by the maximum AI of the single
trace functions in the polynomial representation of f .

8 Conclusions

In this paper we use the theory of polynomial functions to provide an upper
bound on AI of Boolean power functions. The low degree multiples are also
obtained directly from the formula for any n. This is particularly useful as there
are no existing algoritms to find theAI of a function with more than 25 variables.
We improve the AI bound on inverse, Kasami and Niho functions and show that
their AI is very low. We also generalize our results to polynomial functions.

References

1. F. Armknecht, On the Existence of Low-degree Equations for Algebraic Attacks,
Cryptology ePrint Archive, Report 2004/185, http://eprint.iacr.org/, 2004.

2. F. Armknecht, Algebraic Attacks on Combiners with Memory, Advances in
Cryptology-CRYPTO 2003, LNCS 2729, pp. 162-176, Springer-Verlag, 2003.

3. F. Armknecht, Improving Fast Algebraic Attacks Fast Software Encryption 2004,
LNCS 3017, pp. 65-82, Springer-Verlag, 2003.

4. A. Braeken, J. Lano, N. Mentens, B. Preneel and I. Verbauwhede, SFINKS: A Syn-
chronous Stream Cipher for Restricted Hardware Environments, eSTREAM Project
report 2005/026, Available at http://www.ecrypt.eu.org/stream/.

5. A. Braeken and B. Preneel, On the Algebraic Immunity of Symmetric Boolean
Functions,To appear in Indocrypt 2005.

6. J. Cheon and D. Lee, Resistance of S-Boxes Against Algebraic Attacks, Fast Software
Encryption 2004, LNCS 3017, pp. 83-94, Springer-Verlag, 2004.

7. N. Courtois, Fast Algebraic Attacks on Stream Ciphers with Linear Feedback, Ad-
vances in Cryptology-CRYPTO 2003, LNCS 2729, pp. 176-194, Springer-Verlag, 2003.

8. N. Courtois and W. Meier, Algebraic Attacks on Stream Ciphers with Linear
Feedback, Advances in Cryptology-EUROCRYPT 2003, LNCS 2656, pp. 346-359,
Springer-Verlag, 2003.

9. N. Courtois and W. Meier, Algebraic Attacks on Stream Ciphers with Linear Feed-
back, Extended version of [8], available at http://cryptosystem.net/stream

10. N. Courtois, Algebraic Attacks on Combiners with Memory and Several Outputs,
ICISC 2004, LNCS 3506, pp. 3-20, Springer-Verlag, 2004.

11. N. Courtois and Pieprzyk J., Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations, Advances in Cryptology-ASIACRYPT 2002, LNCS 2501. Springer-
Verlag, 2002.

12. N. Courtois, B. Debraize and E. Garrido, On Exact Algebraic [Non]Immunity of
S-boxes Based on Power Functions, Cryptology ePrint Archive, Report 2005/203,
http://eprint.iacr.org/, 2005.

13. J. Daemen, and V.Rijmen, The Design of Rijndael, Springer-Verlag, 2002.
14. D. K. Dalai, K. C. Gupta and S. Maitra, Cryptographically Significant Boolean

Functions: Construction and Analysis in Terms of Algebraic Immunity. Fast Software
Encryption 2005, LNCS 3557, pp. 98-111, Springer-Verlag, 2005.

15. D. K. Dalai, S. Maitra and S. Sarkar, Basic Theory in Construction of Boolean
Functions with Maximum Possible Annihilator Immunity. To appear in Designs,
Codes and Cryptography.

16. H. Dobbertin, Almost Perfect Nonlinear Power Functions on GF (2n): The Welch
Case. IEEE Transactions on Information Theory, Vol. 45, No. 4, pp. 1271-1275, 1999.

17. H. Dobbertin, Almost Perfect Nonlinear Power Functions on GF (2n): The Niho
Case. Information and Computation, Vol. 151, pp. 57-72, 1998.

18. R. Gold, Maximal Recursive Sequences with 3 valued cross-correlation function,
IEEE Transactions on Information Theory, Vol. 14, pp. 154-156, 1968.

19. S. W. Golomb and G. Gong, Hyper-Cyclotomic Algebra, Sequences and their
Applications, SETA’01, Discrete Mathematics and Theoretical Computer Science,
Springer, 2001, pp. 154-165. CORR 2001-33.

20. S. W. Golomb, and G. Gong, Signal Design for Good Correlation: For Wire-
less Communication, Cryptography, and Radar, Cambridge University Press, ISBN
0521821045, 2005.

21. P. Hawkes, G. Rose, Rewriting Variables: The Complexity of Fast Algebraic At-
tacks on Stream Ciphers, Advances in Cryptology-CRYPTO 2004, volume LNCS
3152, pp. 390-406, Springer-Verlag, 2004.

22. P. Ekdahl, and T. Johansson, SNOW-A New Version of the Stream Cipher SNOW,
Selected Areas in Cryptography, 2002, LNCS 2595, pp. 47-61, Springer-Verlag 2003.

23. T. Kasami, The Weight Enumerators for Several Classes of Subcodes of the Second
Order Binary Reed-Muller Codes, Infor. Contr., Vol. 18, pp. 369-394, 1971.

24. R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications.
Cambridge University Press, 1994.

25. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes.
North Holland, 1986.

26. W. Meier, E. Pasalic, and C. Carlet, Algebraic Attacks and Decomposition of
Boolean Functions, Advances in Cryptology EUROCRYPT 2004, LNCS 3027, pp.474-
491, Springer-Verlag, 2004.

27. S. Murphy and M. Robshaw, Essential Algebraic Structure within AES, Advances
in Cryptology Crypto 2002, LNCS 2442, pp.1-16, Springer-Verlag, 2002.

28. S. Murphy and M. Robshaw, Comments on the Security of the AES and the XSL
Technique, Electronic Letters, Vol. 39, pp. 26-38, 2003.

29. Y. Nawaz, G. Gong and K. Gupta, Upper Bounds on Algebraic Immunity of
Boolean Power Functions, Preprint.

30. I. Schaumuller-Bichl, Cryptanalysis of the Data Encryption Standard by the
Method of Formal Coding, Advances in Cryptology EUROCRYPT-1982, LNCS 149,
pp.235-255, Springer-Verlag, 1983.

A Appendix

In order to study the binary representation of e we need the following result.

Lemma 4. Let n > 4 be any integer and f(x) = Trn
1 (βxe), where e = 22s −

2s + 1, gcd(n, s)=1 and s is the highest value less than n
2 . Then

1. If n ≡ 0 mod 4, then gcd(n, s)=1 where s = n
2 − 1

2. If n ≡ 2 mod 4, then gcd(n, s)=1, where s = n
2 − 2

3. If n is odd gcd(n, s)=1, where s = n−1
2

Proof. Let n be even and 2 divides n
2 . Let k > 1 be an integer such that k divides

both n and n
2 − 1. As n

2 is even, n
2 − 1 is odd, and so divisor k must be odd.

Since k divides n, and k is odd, it must also divide n
2 and hence it can not divide

n
2 − 1. Hence the contadiction. So gcd(n, n

2 − 1)=1 and hence s = n
2 − 1.

The proves of the other two cases are similar.
¤

Lemma 5. Let t = e2−s where e and s are defined in Lemma 4. Then H(r +
t2−i) ≤ l + dn

l e, 0 ≤ i ≤ m− 1 and r is defined in Theorem 1.

Proof. From Lemma 4 the binary representation of t is :

s s

t = 2
n−1

2 + 2
n+1

2 − 1 =
︷ ︸︸ ︷
00 · · · 01 0

︷ ︸︸ ︷
11 · · · 11, n is odd.

s s

t = 2
n
2−1 + 2

n
2 +1 − 1 =

︷ ︸︸ ︷
00 · · · 01 00

︷ ︸︸ ︷
11 · · · 11, n ≡ 0 mod 4.

s s

t = 2
n
2−2 + 2

n
2 +2 − 1 =

︷ ︸︸ ︷
00 · · · 01 0000

︷ ︸︸ ︷
11 · · · 11, n ≡ 2 mod 4.

Let us consider the addition of r and t. We only consider the case where
2 | n

2 . The other two cases are similar. The binary representation of t has 2 runs
of 1’s out of which one run consists of single 1. This 1 can only contribute a
single 1 in any segment of r + t. Now we can see that H(r + t2−i) is maximized
when i = l − 1.

l l l

t2−(l−1) =
︷ ︸︸ ︷
11 · · · 10

︷ ︸︸ ︷
00 · · · 00

︷ ︸︸ ︷
0 · · · 100

︷ ︸︸ ︷
001 · · · 11

︷ ︸︸ ︷
11 · · · 11

r = 00 · · · 01 00 · · · 01 0 · · · 001 000 · · · 01 00 · · · 01
+ −−−−−−−−−−−−−−−−−−−−−−

11 · · · 11︸ ︷︷ ︸ 00 · · · 01︸ ︷︷ ︸ 0 · · · 101︸ ︷︷ ︸ 010 · · · 01︸ ︷︷ ︸ 00 · · · 00︸ ︷︷ ︸
l 1 2 2 0

H(r + t2−(l−1)) = l + dn
l e.

Therefore H(r + t2−i) ≤ l + dn
l e, 0 ≤ i ≤ n− 1

¤

