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Abstract. Algorithmic post-processing is used to overcome statistical
deficiencies of physical random number generators. We show that the
quasigroup based approach for post-processing random numbers described
in [MGK05] is ineffective and very easy to attack. We also suggest new al-
gorithms which extract considerably more entropy from their input than
the known algorithms with an upper bound for the number of input bits
needed before the next output is produced.
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1 Introduction

It seems that all physical random number generators show some deviation from
the mathematical ideal of statistically independent and uniformly distributed
bits.

Algorithmic post-processing is used to eliminate or reduce the imperfections
of the output. Clearly, the per bit entropy of the output can only be increased if
the post-processing algorithm is compressing, that is, more than one bit of input
is used to get one bit of output.

Bias, that is a deviation of the 1-probability from 1/2, is a very frequent
problem. There are various ways to deal with it, when one assumes that bias is
the only problem, that is, the bits are statistically independent.

In the rest of the paper, it is assumed that the physical random number
generator produces statistically independent bits. It is also assumed that the
generator is stationary, that is, the bias is constant.

We show that the post-processing algorithm based on quasigroups suggested
in [MGK05] is ineffective. We describe an attack on the post-processed output
bits which requires very little computational effort.

We show that post-processing algorithms for biased random numbers which
produce completely unbiased output cannot have upper bounds on the number
of input bits required until the next output bit is produced. We describe new
algorithms for post-processing biased random numbers which have a fixed num-
ber of input bits. The new algorithms extract considerably more entropy from
the input than the known algorithms with a fixed number of input bits.



2 An ineffective post-processing method for biased
random numbers

At FSE 2005, S. Markovski. D. Gligoroski, and L. Kocarev suggested in [MGK05]
a method based on quasigroups for post-processing biased random numbers. In
this paper, we only give results for their E-algorithm, but all results can be
transferred trivially to the E’-algorithm.

2.1 The E-transform

A quasigroup (A, ∗) of finite order s is a set A of cardinality s with an operation
∗ on A such that the operation table of ∗ is a Latin square (that is, all elements
of A appear exactly once in each row and column of the table).

The mapping eb0,∗ maps a finite string of elements a1, a2, . . . , an of A to a
finite string b1, b2, . . . bn such that bi+1 = ai+1 ∗ bi for i = 0, 1, . . . , n − 1. b0 is
called the leader of the mapping eb0,∗. The leader must be chosen in such a way
that b0 ∗ b0 6= b0 holds.

For a fixed positive integer k, the E-transform of a finite string of elements
from A is just the k-fold application of the function eb0,∗. Here we deviate slightly
from the terminology of [MGK05]. There, the E-transform allows different lead-
ers for the k applications of the function e, but later in the description of the
post-processing algorithm the leader is a fixed element.

2.2 True and claimed properties of the E-transform

Why the suggested quasi group approach is ineffective for post-processing
biased random numbers Theorem 1 of [MGK05] states correctly that the
E-transform is bijective. As a consequence of this theorem the E-transform is
ineffective for post-processing biased random numbers. As a bijection, it cannot
extract entropy from its input bits. The entropy of its output bits is just the
same as the entropy of the input bits. Of course, applying a bijection to some
random bits does not do any harm either.

The output of the E-transform is not uniformly distributed Theorem 2
of [MGK05] claims incorrectly that the substrings of length l ≤ k are uniformly
distributed in the E-transform of a sufficiently long arbitrary input string.

Let x be an element of the quasigroup A. The E-transform is a bijection, so
for each string length n, there is an input string w which is mapped by the E-
transform to the string with n times x in sequence. Clearly, all substrings of the
E-transform of w are just repetitions of x. Hence, the distribution of substrings
of length l ≤ k in the E-transform of w is as far from uniform as possible.

When we look at the proof of the theorem, we see that the authors do not
deal with an arbitrary input string, but with one where all elements of the string
are chosen randomly and statistically independently according to a fixed distri-
bution. In their proof, the authors do not try to show that the distribution of
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the output substrings is exactly uniform, but refer to the stationary state of
a Markov chain. So their result could hold at most asymptotically. However,
the Lemma 1 they use in their proof, is completely wrong. Let x be the input
string for the first application of eb0,∗. Then the lemma states that for all m the
probability of a fixed element of A at the mth position of eb0,∗(x) is approxi-
mately 1/s, s being the order of the quasigroup. To see how wrong this is, we
consider a highly biased generator suggested in [MGK05]. We assume that the
probability of 0-bits is 999/1000 and the probability of 1-bits is 1/1000. The
bits are assumed to be statistically independent. We name this generator HB
(highly biased). (The value of the bias is -0.499 .) For post-processing, we use a
quasigroup ({0, 1, 2, 3}, ∗) of order 4. We map each pair of input bits bijectively
to a quasigroup element by using the binary value of the pair. Hence the post-
processing input 0 has probability 0.998001, 1 and 2 have probability 0.000999,
and the probability of 3 is 0.000001. The first element of eb0,∗(x) depends only
on the first element of x. So, one element of A appears as first element of the
output string with probability 0.998001, two with probability 0.000999, and one
with probability 0.000001. All these values are very far away from the value 1/4
suggested by the lemma.

One should note that the generator HB, which we consider several times in
this paper, was not constructed to demonstrate the weakness of the quasigroup
post-processing, but that the authors of [MGK05] claim explicitly that their
method is suited for post-processing the output of HB.

2.3 What is really going on in the E-transform

The elements at the end of the output string of the E-transform approach the
uniform distribution very slowly, when the input string from a strongly biased
source is growing longer. This is shown in Figure 1. We used the quasigroup
of order 4 from the Example 1 in [MGK05] and the leader 1 with k = 128 (as
suggested by the authors of [MGK05] for highly biased input) to post-process
10000 samples of 100000 bits (50000 input elements) from the generator HB.

To achieve an approximately uniform distribution, about 50000 input ele-
ments, or 100000 bits have to be processed.

Now, it would be wrong to conclude that everything is fine after 100000 bits.
Since the E-transform is bijective for all input lengths, the entropy of the later
output elements is as low as the entropy of the first ones. How can the entropy of
the later output bits be so low if they are approximately uniformly distributed?
The low entropy is the result of strong statistical dependencies between the
output elements. For the later output elements, the E-transform just replaces
one statistical problem, bias, with another one, dependency. Of course one cannot
expect anything better from a bijective post-processing function.

2.4 Attacking the post-processed output of the E-transform

Since the E-transform is bijective, it is, from an information theoretical point of
view, clear that its output resulting from an input with biased probabilities can
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Fig. 1. Frequencies of the element 0 in the post-processed output of the generator HB.
For each position in the output string, one dot indicates the frequency of the output
element 0 at that position in 10000 experiments. To be visible, the dots have to be so
large the individual dots are not discernible and give the impression of three ”curves”.
For subsequent output elements, the output frequency sometimes jumps from one of
the three ”curves” visible in the figure to another one.

be predicted with a probability greater than 1/s, where s is the cardinality of A.
We will show now that the computation of the output element with the highest
probability is very easy.

The first output element of the E-transform is the easiest to guess. We just
choose the string containing the most frequent input symbol and apply the E-
transform to get the most probable first output element. For predicting later
output elements, we have to know the previous input elements. They can be
easily computed from the output elements. Due to the Latin square property
of the operation table of ∗, the equation bi+1 = ai+1 ∗ bi, which defines eb0,∗
can be uniquely resolved for ai+1 if bi+1 and bi are given. To the previous input
elements we append the most probable input symbol and apply the E-transform.
The last element of the output string is the most probable next output element.
Our prediction is correct if the most probable input symbol occurred. For the
generator HB and a quasigroup of order 4, this means that we have a probability
of 0.998001 to predict the next output element correctly. The computational
effort for the attack is about the same as for the application of the E-transform.

2.5 Attacking unknown quasigroups and leaders

The authors of [MGK05] do not suggest to keep secret the quasigroup and the
leader chosen for post-processing the random numbers. We show here for one set
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of parameters suggested in [MGK05] that even keeping the parameters secret
would not prevent the prediction of output bits. For the attack, we assume
that the attacker gets to see all output bits from post-processing, and that she
may restart the generator such that the post-processing is reinitialized. Since
the post-processing is bijective, an attacker can learn nothing from observing
the post-processed output of a perfect random number generator. Instead, we
consider again the highly biased generator HB.

We choose the parameters for the post-processing function according to the
suggestions of [MGK05]. The order of the quasigroup was chosen to be 4, and
the number k of applications of eb0,∗ as 128.

Normalised Latin squares of order 4 have 0, 1, 2, 3 as their first row and
column. By trying out all possibilities, one sees easily that there are exactly 4
normalised Latin squares of order 4. By permuting all four columns and the last
three rows of the 4 normalised Latin squares we find all possible Latin squares
of order 4. Hence, there are 4 · 4! · 3! = 576 quasigroups of order 4. With 4
leaders for each, this would mean 2304 choices of parameters to consider for the
E-transform. However, we have to take into account that the leader l may not
have the property l ∗ l = l. After sorting out those undesired cases, we are left
with 1728 cases.

From the observed post-processed bits, we want to uniquely determine the
parameters used.

The attack is very simple. We apply the inverse E-transform for all 1728
possible choices of quasigroup and leaders to the first n of the observed postpro-
cessed bits. With high probability, the correct choice of parameters is revealed
by an overwhelming majority of 0 bits in the inverse. When choosing n = 32, the
correct parameters are uniquely identified by an inverse of 32 0 bits in 61 % of all
cases. Using more post-processed bits, we can get arbitrarily close to certainty
about having found the right parameters. This variant of the attack is due to an
anonymous reviewer of FSE 2007, mine was unnecessarily complicated.

When we have determined the parameters of the E-transform, the attack can
continue as described in the previous section.

This finishes our treatment of quasigroup post-processing for true random
numbers.

3 Two classes of random number post-processing
functions

We have seen that bijective methods of post-processing random numbers are not
useful, as they can not increase entropy. We have to accept that efficient post-
processing functions have less output bits than input bits. This paper only deals
with the post-processing of random bits which are assumed to be statistically
independent, but which are possibly biased. The source of randomness is assumed
to be stationary, that is the bias does not change with time. Although the bias is
constant, it is unrealistic to assume that its numerical value, that is the deviation
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of the probability of 1 bits from 1/2, is exactly known. A useful post-processing
function should work for all biases from a not too small range.

Probably the oldest method of post-processing biased random numbers was
invented by John von Neumann [vN63]. He partitions the bits from the true
random number generator in adjacent, non-overlapping pairs. The result of a
01 pair is a 0 output bit. A 10 pair results in a 1 output bit. Pairs 00 and 11
are just discarded. Since the bits are assumed to be independent and the bias is
assumed to be constant, the pairs 01 and 10 have exactly the same probability.
The output is therefore completely unbiased.

However, this method has two drawbacks: firstly, even for a perfect true
random number generator it results in an average output data rate 4 times slower
than the input data rate, and secondly, the waiting times until output bits are
available can become arbitrarily large. Although pairs 01 or 10 statistically turn
up quite often, it is not certain that they will do so within any fixed number
of pairs considered. This is a unsatisfactory situation for the software developer
who has to use the random numbers. In many protocols, time-outs occur when
reactions to messages take too long. Although the probability for this event
can be made arbitrarily low, it can not be reduced to zero when using the von
Neumann post-processing method.

The low output date rate may be overcome by using methods like the one de-
scribed by Peres [Per92]. A very general method for post-processing any station-
ary, statistcally independent data is given in [JJSH00]. The algorithm described
there can asymptotically extract all the entropy from its input. So the data
rate is asymptotically optimal. The problem of arbitrarily long waiting times,
however, can not be solved. This is proved in the following theorem:

Theorem 1. Let f be an arbitrary post-processing function which maps n bits
to one bit, n being a positive integer. Let X1, . . . , Xn be n independent random
bits with the same probability p of 1-bits. Let S be an infinite subset of the unit
interval. Then Pr[f(X1, . . . , Xn) = 1] 6= 1/2 holds for infinitely many p ∈ S.

Proof: Pr[f(X1, . . . , Xn) = 1] is a polynomial of at most n-th degree in p.
Its value for p = 0 is either 0 or 1. If the function is constant, it is unequal
1/2 on the whole unit interval. If it is a non-constant polynomial, there are at
most n p-values, for which it assumes the value 1/2. For all other p ∈ S holds
Pr[f(X1, . . . , Xn) = 1] 6= 1/2. q. e. d.

So we have two classes of functions for post-processing true random numbers:
those with bounded numbers of input bits to produce one bit of output, and those
with unbounded. We can reformulate our theorem as

An algorithm for post-processing biased, but statistically independent random
bits with a bounded number of input bits for one output bit cannot produce un-
biased output bits for an infinite set of biases.

For practical implementations, an unbounded number of input bits means an
unbounded waiting time until the next output is produced.
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So we have to accept some output bias for bounded waiting time post-
processing functions, but we will show subsequently how to make this bias very
small.

Although not as well known as the von Neumann post-processing algorithm,
some algorithms with a fixed number of input bits are frequently used to improve
the statistical quality of the output of true random number generators.

Probably the simplest method is to XOR n bits from the generator in order
to get one bit of output where n is a fixed integer greater than 1.

Another popular method is to use a linear feedback shift register where the
bits from the true random number generator are XORed to the feedback value
computed according to the feedback polynomial. The result of this XOR opera-
tion is then fed back to the shift register. After clocking m bits from the physical
random number generator into the shift register, one bit of output is taken from
a cell of the shift register. This method tries to make use of the good statisti-
cal properties of linear feedback shift registers. Even when the physical source
of randomness breaks down completely and produces only constant bits, the
LFSR computes output which at first sight looks random. When the bits from
the physical source are non-constant but biased, some of the bias is removed,
but additional dependencies between output bits are introduced by this LFSR
method.

4 Improved random number post-processing functions
with a fixed number of input bits

4.1 The concrete problem considered

We consider the following problem: we have a stationary source of random bits
which produces statistically independent, but biased output bits. Let p be the
probability for a 1 bit. The post-processing algorithm we are looking for must
not depend on the value of p. The post-processing algorithm uses 16 bits from
the physical source of randomness in order to produce 8 bits of output. Our aim
is to choose an algorithm such that the entropy of the output byte is high.

The number of input bits of the function we are looking for is 16. This is a
trivial upper bound on the number of input bits needed before the next output
is produced. Clearly, any decent implementation will also produce the output
after a bounded waiting time.

4.2 A solution for low area hardware implementation

Let a0, a1, . . . , a15 be the input bits for post-processing. We define the 8 bits
b0, b1, . . . , b7 by bi = ai XOR a(i+1) mod 8. We note that the mapping from
a0, . . . , a7 to b0, . . . , b7 defined in this way is not bijective. Only 128 different
values for b0, b1, . . . , b7 are possible. When the input is a perfect random num-
ber generator, we destroy one bit of entropy by mapping a0, . . . , a7 to b0, . . . , b7.
The output c0, c1, . . . , c7 of the suggested post-processing function is defined by
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ci = bi XOR ai+8. We call this function, which maps 16 input bits to 8 output
bits, H.

If we split the 16 input bits of H into two bytes we name a1 and a2, we can
write H in pseudocode as

H(a1,a2)= XOR(XOR(a1,rotateleft(a1,1)),a2)

Figure 2 shows the design of this post-processing function.

XOR XOR XOR XOR XOR XORXOR

XOR XOR XOR XOR XOR XOR XORXOR

XOR

Output

In
p
u
t

Fig. 2. The post-processing function H

The entropy of the output of H is shown in Figure 3 as a function of p.
The dashed line in the figure shows, for comparison, the entropy one gets

when compressing two input bytes to one output byte by bitwise XOR. We see
that H extracts significantly more entropy from its input than the XOR.

Figure 3 might suggest that for low biases the entropies of H and XOR are
quite comparable. Indeed both are close to 8, but H is considerably closer. Let’s
look at a generator which produces 1-bits with a probability of 0.51. This is quite
good for a physical random number generator. When we use XOR to compress
two bytes from this generator to one output byte, the output byte has an entropy
of 7.9999990766751 . Using H, we get eH = 7.9999999996305 . So in this case
the deviation from the ideal value 8 is reduced by a factor more than 2499 if we
use H instead of XOR. How good must a generator be to produce output bytes
with entropy eH when using XOR for postprocessing? From 2 input-bytes with
a 1-probability of 0.501417 we get an output entropy of eh if we XOR them.
With XOR the 1-probability must be seven times closer to 0.5 than with H to
get the output entropy eH .

The improved entropy of H is achieved with very low hardware costs, just
16 XOR gates with two inputs are needed.
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Fig. 3. The entropy of H

4.3 Analysis of H

What is going on in H? Why is its entropy higher than the entropy of XOR
although one first discards one bit of entropy from one input byte? Let us look
at the probabilities in more detail.

We define the quantitative value of the bias as

ε = p− 1/2.

First we compute the probability that the source produces a raw (unpro-
cessed) byte B. Since the bits of B are independent, the probability depends
only on the Hamming weight w of B. It is

(1/2− ε)8−w · (1/2 + ε)w
.

For the different values of w we obtain

w byte probability for a raw data byte
0 1

256 −
ε
16 + 7 ε2

16 − 7 ε3

4 + 35 ε4

8 − 7 ε5 + 7 ε6 − 4 ε7 + ε8

1 1
256 −

3 ε
64 + 7 ε2

32 − 7 ε3

16 + 7 ε5

4 − 7 ε 6

2 + 3 ε7 − ε8

2 1
256 −

ε
32 + ε2

16 + ε3

8 − 5 ε4

8 + ε 5

2 + ε6 − 2 ε7 + ε8

3 1
256 −

ε
64 −

ε2

32 + 3 ε3

16 − 3 ε5

4 + ε 6

2 + ε7 − ε8

4 1
256 −

ε2

16 + 3 ε4

8 − ε6 + ε8

5 1
256 + ε

64 −
ε2

32 −
3 ε3

16 + 3 ε5

4 + ε 6

2 − ε7 − ε8

6 1
256 + ε

32 + ε2

16 −
ε3

8 − 5 ε4

8 − ε 5

2 + ε6 + 2 ε7 + ε8

7 1
256 + 3 ε

64 + 7 ε2

32 + 7 ε3

16 − 7 ε5

4 − 7 ε 6

2 − 3 ε7 − ε8

8 1
256 + ε

16 + 7 ε2

16 + 7 ε3

4 + 35 ε4

8 + 7 ε5 + 7 ε6 + 4 ε7 + ε8
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For a good generator, ε should be small. As a consequence, the terms with
the lower powers of ε are the more disturbing ones, the linear ones being the
worst.

Before we start the analysis of H, we consider the XOR post-processing. The
XOR of two raw input bits results in a 1-bit with a probability of 2p(1 − p) =
1/2− 2ε2. That is, the bias of the resulting bit is −2ε2. When we insert this bias
term for the ε in the table above we obtain the byte probabilities for the bitwise
XOR of two raw data bytes:

w byte probability for the XOR of two raw data bytes
0 1

256 −
ε2

8 + 7 ε4

4 − 14 ε6 + 70 ε8 − 224 ε10 + 448 ε12 − 512 ε14 + 256 ε16

1 1
256 −

3 ε2

32 + 7 ε4

8 − 7 ε6

2 + 56 ε10 − 224 ε12 + 384 ε14 − 256 ε16

2 1
256 −

ε2

16 + ε4

4 + ε6 − 10 ε8 + 16 ε10 + 64 ε12 − 256 ε14 + 256 ε16

3 1
256 −

ε2

32 −
ε4

8 + 3 ε6

2 − 24 ε10 + 32 ε12 + 128 ε14 − 256 ε16

4 1
256 −

ε4

4 + 6 ε8 − 64 ε12 + 256 ε16

5 1
256 + ε2

32 −
ε4

8 − 3 ε6

2 + 24 ε10 + 32 ε12 − 128 ε14 − 256 ε16

6 1
256 + ε2

16 + ε4

4 − ε6 − 10 ε8 − 16 ε10 + 64 ε12 + 256 ε14 + 256 ε16

7 1
256 + 3 ε2

32 + 7 ε4

8 + 7 ε6

2 − 56 ε10 − 224 ε12 − 384 ε14 − 256 ε16

8 1
256 + ε2

8 + 7 ε4

4 + 14 ε6 + 70 ε8 + 224 ε10 + 448 ε12 + 512 ε14 + 256 ε16

Indeed, all the linear terms in ε are gone.
We also analysed some linear feedback shift registers used for true random

number post-processing. In the cases we considered, the ratio of the numbers
of input and output bits was 2. We observed that the output probabilities con-
tained no linear powers of ε, but squares occurred. So XOR and LFSRs with an
input/output ratio of 2 seem to be random number post-processing functions of
similar quality.

Now we compute the probabilities of the output bytes of H. One approach
is to consider every possible pair of input bytes to determine its probability as
the product of the byte probabilities from the table for raw bytes above, and
to sum up these probabilities separately for all input byte pairs which lead to
the same value of H. We obtain 30 different probabilities. Formulas for theses
probabilities are shown in Table 1. In all these probabilities, there are no linear
or quadratic terms in ε! This explains why H is better than the simple XOR of
2 input bytes.

But now, there is a challenge: Can we eliminate further powers of ε?

4.4 Improving

Can we eliminate further powers of ε? Surprisingly, slight modifications of H also
eleminate the third and forth power of ε. Again, we split up the 16 input bits
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output byte probability for H
1

256
+ ε3

16
− ε4

4
− 3 ε5

4
+ ε6

2
+ 3 ε7 + 3 ε8 − 4 ε9 − 8 ε10

1
256
− ε3

16
− ε4

4
+ 3 ε5

4
+ ε6

2
− 3 ε7 + 3 ε8 + 4 ε9 − 8 ε10

1
256
− ε3

16
− ε5

4
− ε6

2
+ 5 ε7 − ε8 − 12 ε9 + 8 ε10

1
256

+ ε3

16
+ ε5

4
− ε6

2
− 5 ε7 − ε8 + 12 ε9 + 8 ε10

1
256
− ε3

16
+ ε4

4
− ε5

4
− 3 ε6

2
+ ε7 − 5 ε8 + 20 ε9 + 24 ε10 − 64 ε11

1
256

+ 3 ε3

16
+ ε4

4
+ ε5

4
+ 5 ε6

2
+ 3 ε7 − 5 ε8 − 20 ε9 − 40 ε10 − 32 ε11

1
256

+ ε3

16
− ε4

4
− ε5

4
+ ε6

2
− 3 ε7 + 3 ε8 + 20 ε9 − 8 ε10 − 32 ε11

1
256
− ε3

16
+ ε5

4
− ε6

2
− ε7 − ε8 + 12 ε9 + 8 ε10 − 32 ε11

1
256
− 3 ε3

16
+ ε4

4
− ε5

4
+ 5 ε6

2
− 3 ε7 − 5 ε8 + 20 ε9 − 40 ε10 + 32 ε11

1
256
− ε3

16
− ε4

4
+ ε5

4
+ ε6

2
+ 3 ε7 + 3 ε8 − 20 ε9 − 8 ε10 + 32 ε11

1
256

+ ε3

16
− ε5

4
− ε6

2
+ ε7 − ε8 − 12 ε9 + 8 ε10 + 32 ε11

1
256

+ ε3

16
+ ε4

4
+ ε5

4
− 3 ε6

2
− ε7 − 5 ε8 − 20 ε9 + 24 ε10 + 64 ε11

1
256
− 2 ε6 + 9 ε8 − 32 ε12

1
256
− ε4

4
+ ε6 − 3 ε8 + 16 ε10 − 32 ε12

1
256
− ε3

8
+ ε5

2
+ 2 ε7 − 7 ε8 − 8 ε9 + 32 ε10 − 32 ε12

1
256

+ ε3

8
− ε5

2
− 2 ε7 − 7 ε8 + 8 ε9 + 32 ε10 − 32 ε12

1
256

+ ε3

8
+ ε4

4
+ ε5

2
+ ε6 + 2 ε7 + 5 ε8 − 8 ε9 − 48 ε10 − 64 ε11 − 32 ε12

1
256
− ε3

8
+ ε4

4
− ε5

2
+ ε6 − 2 ε7 + 5 ε8 + 8 ε9 − 48 ε10 + 64 ε11 − 32 ε12

1
256

+ ε4

4
− 2 ε6 + ε8 + 32 ε12

1
256
− ε4

4
+ 9 ε8 − 32 ε10 + 32 ε12

1
256
− ε4

2
+ 3 ε6 − 3 ε8 − 16 ε10 + 32 ε12

1
256
− ε3

8
+ ε5

2
− ε6 + 2 ε7 + 5 ε8 − 8 ε9 − 16 ε10 + 32 ε12

1
256

+ ε3

8
− ε5

2
− ε6 − 2 ε7 + 5 ε8 + 8 ε9 − 16 ε10 + 32 ε12

1
256

+ ε6 − 11 ε8 + 16 ε10 + 32 ε12,
1

256
− ε3

4
+ ε4

2
− ε5 + 7 ε6 − 20 ε7 + 45 ε8 − 112 ε9 + 176 ε10 − 128 ε11 + 32 ε12

1
256
− ε5

2
− ε6 + 2 ε7 + 5 ε8 + 8 ε9 − 16 ε10 − 32 ε11 + 32 ε12

1
256
− ε3

8
+ ε6 + 4 ε7 − 11 ε8 + 16 ε10 − 32 ε11 + 32 ε12

1
256

+ ε5

2
− ε6 − 2 ε7 + 5 ε8 − 8 ε9 − 16 ε10 + 32 ε11 + 32 ε12

1
256

+ ε3

8
+ ε6 − 4 ε7 − 11 ε8 + 16 ε10 + 32 ε11 + 32 ε12

1
256

+ ε3

4
+ ε4

2
+ ε5 + 7 ε6 + 20 ε7 + 45 ε8 + 112 ε9 + 176 ε10 + 128 ε11 + 32 ε12

Table 1. Probabilities of the outputs of H for bias ε
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into two bytes a1 and a2 and define the functions H2 and H3 by the following
pseudocode:

H2(a1,a2)= XOR(XOR(XOR(a1,rotateleft(a1,1)),rotateleft(a1,2)),a2)

H4(a1,a2)= XOR(XOR(XOR(XOR(a1,rotateleft(a1,1)),
rotateleft(a1,2)),rotateleft(a1,4)),a2)

For H2 we find that the lowest powers of ε in the probabilities of the output
bytes are ε4. For H3 they are ε5.

4.5 An even better solution

It seems that the linear methods which could eliminate all powers of ε up to the
forth do not work for the fifth. Whereas the linear solutions turned up rather
wondrously, we have to labour now. What must we do in order to eliminate the
first through fifth powers of ε? We have to partition the set of 65536 inputs into
256 sets of cardinality 256 in such a way that the first through fifth powers of
ε disappear in all 256 sums over the 256 input probabilities. Fortunately, we do
not have to deal with too many different input probabilities, since they depend
only on the Hamming weight w of the 16 bit input. The probabilities and their
numbers of occurrences are given in Table 2.

A careful look at this table shows that all odd powers of ε disappear in the
probabilities, if we partition the inputs in such a way that 16 bit input values
and their bitwise complements are always in the same partition. This makes our
problem significantly easier and leads to the much simpler Table 3.

For the Hamming weight 8, the number of occurrences in Table 3 is only
half of the number in Table 2, because the Hamming weight of complements of
inputs with Hamming weight 8 is also 8.
Now, we have to partition the 32768 values from this table into 256 sets with
128 elements, such that the first through fifth powers of ε eliminate each other.
Here is the solution we found:

Among the 256 sets, we distinguish 7 different types:
Type A consists of once the Hamming weight 0, 112 times the Hamming

weight 6, and 15 times the Hamming weight 8. There is only one set of type A.
Type B consists of once the Hamming weight 1, 42 times the Hamming

weight 5, and 85 times the Hamming weight 7. There are 16 sets of type B.
Type C consists of 14 times the Hamming weight 4, 28 times the Hamming

weight 5, 36 times the Hamming weight 7, and 50 times the Hamming weight 8.
There are 46 sets of type C.

Type D consists of twice the Hamming weight 2, 37 times the Hamming
weight 5, 16 times the Hamming weight 6, 43 times the Hamming weight 7, and
30 times the Hamming weight 8. There are 60 sets of type D.

Type E consists of 5 times the Hamming weight 3, 7 times the Hamming
weight 4, 58 times the Hamming weight 6, 43 times the Hamming weight 7, and
15 times the Hamming weight 8. There are 112 sets of type E.
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w Occurrences Probability of 16 bit input with Hamming weight w

0 1 1
65536

− ε
2048

+ 15 ε2

2048
− 35 ε3

512
+ 455 ε4

1024
− 273 ε5

128
+ 1001 ε6

128
− 715 ε7

32
+ 6435 ε8

128
−

715 ε9

8
+ 1001 ε10

8
− 273 ε11

2
+ 455 ε12

4
− 70 ε13 + 30 ε14 − 8 ε15 + ε16

1 16 1
65536

− 7 ε
16384

+ 45 ε2

8192
− 175 ε3

4096
+ 455 ε4

2048
− 819 ε5

1024
+ 1001 ε6

512
− 715 ε7

256
+

715 ε9

64
− 1001 ε10

32
+ 819 ε11

16
− 455 ε12

8
+ 175 ε13

4
− 45 ε14

2
+ 7 ε15 − ε16

2 120 1
65536

− 3 ε
8192

+ ε2

256
− 49 ε3

2048
+ 91 ε4

1024
− 91 ε5

512
+ 143 ε7

128
− 429 ε8

128
+ 143 ε9

32
−

91 ε11

8
+ 91 ε12

4
− 49 ε13

2
+ 16 ε14 − 6 ε15 + ε16

3 560 1
65536

− 5 ε
16384

+ 21 ε2

8192
− 45 ε3

4096
+ 39 ε4

2048
+ 39 ε5

1024
− 143 ε6

512
+ 143 ε7

256
− 143 ε9

64
+

143 ε10

32
− 39 ε11

16
− 39 ε12

8
+ 45 ε13

4
− 21 ε14

2
+ 5 ε15 − ε16

4 1820 1
65536

− ε
4096

+ 3 ε2

2048
− 3 ε3

1024
− 9 ε4

1024
+ 15 ε5

256
− 11 ε6

128
− 11 ε7

64
+ 99 ε8

128
−

11 ε9

16
− 11 ε10

8
+ 15 ε11

4
− 9 ε12

4
− 3 ε13 + 6 ε14 − 4 ε15 + ε16

5 4368 1
65536

− 3 ε
16384

+ 5 ε2

8192
+ 5 ε3

4096
− 25 ε4

2048
+ 17 ε5

1024
+ 33 ε6

512
− 55 ε7

256
+ 55 ε9

64
−

33 ε10

32
− 17 ε11

16
+ 25 ε12

8
− 5 ε13

4
− 5 ε14

2
+ 3 ε15 − ε16

6 8008 1
65536

− ε
8192

+ 5 ε3

2048
− 5 ε4

1024
− 9 ε5

512
+ ε6

16
+ 5 ε7

128
− 45 ε8

128
+ 5 ε9

32
+ ε10 −

9 ε11

8
− 5 ε12

4
+ 5 ε13

2
− 2 ε15 + ε16

7 11440 1
65536

− ε
16384

− 3 ε2

8192
+ 7 ε3

4096
+ 7 ε4

2048
− 21 ε5

1024
− 7 ε6

512
+ 35 ε7

256
− 35 ε9

64
+

7 ε10

32
+ 21 ε11

16
− 7 ε12

8
− 7 ε13

4
+ 3 ε14

2
+ ε15 − ε16

8 12870 1
65536

− ε2

2048
+ 7 ε4

1024
− 7 ε6

128
+ 35 ε8

128
− 7 ε10

8
+ 7 ε12

4
− 2 ε14 + ε16

9 11440 1
65536

+ ε
16384

− 3 ε2

8192
− 7 ε3

4096
+ 7 ε4

2048
+ 21 ε5

1024
− 7 ε6

512
− 35 ε7

256
+ 35 ε9

64
+

7 ε10

32
− 21 ε11

16
− 7 ε12

8
+ 7 ε13

4
+ 3 ε14

2
− ε15 − ε16

10 8008 1
65536

+ ε
8192

− 5 ε3

2048
− 5 ε4

1024
+ 9 ε5

512
+ ε6

16
− 5 ε7

128
− 45 ε8

128
− 5 ε9

32
+ ε10 +

9 ε11

8
− 5 ε12

4
− 5 ε13

2
+ 2 ε15 + ε16

11 4368 1
65536

+ 3 ε
16384

+ 5 ε2

8192
− 5 ε3

4096
− 25 ε4

2048
− 17 ε5

1024
+ 33 ε6

512
+ 55 ε7

256
− 55 ε9

64
−

33 ε10

32
+ 17 ε11

16
+ 25 ε12

8
+ 5 ε13

4
− 5 ε14

2
− 3 ε15 − ε16

12 1820 1
65536

+ ε
4096

+ 3 ε2

2048
+ 3 ε3

1024
− 9 ε4

1024
− 15 ε5

256
− 11 ε6

128
+ 11 ε7

64
+ 99 ε8

128
+

11 ε9

16
− 11 ε10

8
− 15 ε11

4
− 9 ε12

4
+ 3 ε13 + 6 ε14 + 4 ε15 + ε16

13 560 1
65536

+ 5 ε
16384

+ 21 ε2

8192
+ 45 ε3

4096
+ 39 ε4

2048
− 39 ε5

1024
− 143 ε6

512
− 143 ε7

256
+ 143 ε9

64
+

143 ε10

32
+ 39 ε11

16
− 39 ε12

8
− 45 ε13

4
− 21 ε14

2
− 5 ε15 − ε16

14 120 1
65536

+ 3 ε
8192

+ ε2

256
+ 49 ε3

2048
+ 91 ε4

1024
+ 91 ε5

512
− 143 ε7

128
− 429 ε8

128
− 143 ε9

32
+

91 ε11

8
+ 91 ε12

4
+ 49 ε13

2
+ 16 ε14 + 6 ε15 + ε16

15 16 1
65536

+ 7 ε
16384

+ 45 ε2

8192
+ 175 ε3

4096
+ 455 ε4

2048
+ 819 ε5

1024
+ 1001 ε6

512
+ 715 ε7

256
−

715 ε9

64
− 1001 ε10

32
− 819 ε11

16
− 455 ε12

8
− 175 ε13

4
− 45 ε14

2
− 7 ε15 − ε16

16 1 1
65536

+ ε
2048

+ 15 ε2

2048
+ 35 ε3

512
+ 455 ε4

1024
+ 273 ε5

128
+ 1001 ε6

128
+ 715 ε7

32
+ 6435 ε8

128
+

715 ε9

8
+ 1001 ε10

8
+ 273 ε11

2
+ 455 ε12

4
+ 70 ε13 + 30 ε14 + 8 ε15 + ε16

Table 2. Probabilities of 16-bit-vectors with bit bias ε
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w Occurrences Probability of input + probability of complement

0 1 1
32768

+ 15 ε2

1024
+ 455 ε4

512
+ 1001 ε6

64
+ 6435 ε8

64
+ 1001 ε10

4
+ 455 ε12

2
+ 60 ε14 + 2 ε16

1 16 1
32768

+ 45 ε2

4096
+ 455 ε4

1024
+ 1001 ε6

256
− 1001 ε10

16
− 455 ε12

4
− 45 ε14 − 2 ε16

2 120 1
32768

+ ε2

128
+ 91 ε4

512
− 429 ε8

64
+ 91 ε12

2
+ 32 ε14 + 2 ε16

3 560 1
32768

+ 21 ε2

4096
+ 39 ε4

1024
− 143 ε6

256
+ 143 ε10

16
− 39 ε12

4
− 21 ε14 − 2 ε16

4 1820 1
32768

+ 3 ε2

1024
− 9 ε4

512
− 11 ε6

64
+ 99 ε8

64
− 11 ε10

4
− 9 ε12

2
+ 12 ε14 + 2 ε16

5 4368 1
32768

+ 5 ε2

4096
− 25 ε4

1024
+ 33 ε6

256
− 33 ε10

16
+ 25 ε12

4
− 5 ε14 − 2 ε16

6 8008 1
32768

− 5 ε4

512
+ ε6

8
− 45 ε8

64
+ 2 ε10 − 5 ε12

2
+ 2 ε16

7 11440 1
32768

− 3 ε2

4096
+ 7 ε4

1024
− 7 ε6

256
+ 7 ε10

16
− 7 ε12

4
+ 3 ε14 − 2 ε16

8 6435 1
32768

− ε2

1024
+ 7 ε4

512
− 7 ε6

64
+ 35 ε8

64
− 7 ε10

4
+ 7 ε12

2
− 4 ε14 + 2 ε16

Table 3. Probabilities for combining 16 bit inputs and their complements (bit bias ε)

Type F consists of 13 times the Hamming weight 4, 30 times the Hamming
weight 5, 8 times the Hamming weight 6, 2 times the Hamming weight 7, and
75 times the Hamming weight 8. There are 4 sets of type F.

Type G consists of 20 times the Hamming weight 4, 4 times the Hamming
weight 5, 24 times the Hamming weight 6, 60 times the Hamming weight 7, and
20 times the Hamming weight 8. There are 17 sets of type G.

The following table shows the output probability for each type:

Type Probability of output byte
A 1

256 + 28 ε6 + 30 ε8 + 448 ε10 + 256 ε16

B 1
256 + 7 ε6 − 112 ε10 − 256 ε16

C 1
256 −

21 ε6

4 + 49 ε8 − 168 ε10 + 224 ε12 − 64 ε14

D 1
256 + 37 ε6

16 − 33 ε8

4 − 78 ε10 + 312 ε12 − 112 ε14 − 64 ε16

E 1
256 + 7 ε6

16 − 87 ε8

4 + 134 ε10 − 248 ε12 + 48 ε14 + 64 ε16

F 1
256 −

45 ε6

8 + 111 ε8

2 − 212 ε10 + 368 ε12 − 288 ε14 + 128 ε16

G 1
256 −

15 ε6

4 + 25 ε8 − 24 ε10 − 160 ε12 + 320 ε14

All ε powers up to the fifth are gone!
In order to define a concrete post-processing function, we have to fix which

inputs are mapped to which outputs. We can do this arbitrarily, taking into
account the rules indicated above. The many choices we have for defining the
concrete function do not influence the statistical quality of the function, but
they can be used to ease the implementation of the function. Let S be a fixed
function constructed according to the principles described above.

4.6 What about going further?

Naturally, we want to go on to eliminate the sixth powers of ε. Linear program-
ming shows that the probability for Hamming weight 1 can be used at most
296/891 times when we want to arrange the probabilities in such a way that for
sets of 256 probabilities the ε-powers cancel out up to the sixth. As a fraction
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does not make sense here, we have shown that it is impossible to eliminate the
sixth powers of ε. We do not claim that S is optimal, as there might be solutions
with sixth powers of ε with smaller absolute values of the coefficients than S.

We used the linear progamming approach to prove another negative result:
When considering postprocessing with 32 input and 16 output bits, the proba-
bility of the outputs contains nineth or lower powers of ε.

4.7 The Entropy of S

Entropy XOR

SH

H

H

H

H
H

Probability of 1- bit

0.3 0.4 0.5 0.6 0.7

7.98

7.985

7.99

7.995

8

Fig. 4. The entropy of S

Figure 4 shows, as expected, that S extracts even more entropy from its input
than H.

In the evaluation directive AIS 31 for true random number generators of
the German BSI [KS01], a bias of 0.02 is still considered acceptable. This bias
corresponds to an entropy of 0.998846 per bit, or 7.99076 per byte. This entropy
is achieved by a source with bias 0.1, if each output bit is the XOR of two input
bits. With the post-processing function H, the same entropy is achieved with a
source bias of 0.16835. And for the post-processing function S, we obtain this
entropy even for a source bias of 0.23106.

4.8 On the Implementation of S

A hardware implementation of the post-processing function S would probably
require a considerable amount of chip area. The easiest way to implement S is
just a lookup table, which assigns output bytes to all possible 16 bit inputs. Such
a table requires 64 kBytes of ROM. This should be no problem on a modern
PC, but could be prohibitive for some smart-card applications. We can halve
this storage requirement, if we take into account that inputs and their bitwise
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complements lead to the same output. If the leading bit of the input is 1, we use
the output for its bitwise complement from the table. Therefore, we can use a
table of 32 kBytes.

We can implement really compact software for S, if we make use of the free-
dom we have for fixing the values for the function S. We will only sketch the
principle of such a software implementation. The main idea is to use the lex-
icographically first possible solution for all situations, where one has a choice.
Following this principle, the only instance of type A leads to the output of 0,
the 16 instances of type B to the output values 1, . . . , 16. The 46 instances of
type C are assigned the output values 17, . . . , 62, and so on. The assignment
of input values to instances of types also follows this lexicographic principle. As
an example, we consider inputs of Hamming weight 8. The 15 lexicographically
lowest 16 bit values with Hamming weight 8 are assigned to the only instance of
type A. Type B does not use inputs of Hamming weight 8, so the lexicograph-
ically next inputs with this Hamming weight are assigned to instances of type
C. The lexicographically next 50 inputs with Hamming weight 8 are assigned to
the first instance of type C, the next 50 to the second instance of type C, and
so on. When we follow this lexicographic design principle, the tables needed for
the computation of S can be stored very compactly in about 50 bytes.

This lexicographic principle can only be used profitably for a software im-
plementation, if we are able to determine the rank of a given 16 bit value of
Hamming weight w in the lexicographic order of the inputs of this Hamming
weight. Let p0, p1, . . . , pw−1 with p0 < p1 < · · · < pw−2 < pw−1 be the bit
positions of the 1-bits of the input. Let the bit position of the least significant
bit be 0, and let the bit position of the most significant bit be 15. Then the
lexicographic rank is given by∑w−1

i=0

(
pi

i + 1

)
.

5 Conclusion and further research topics

We have shown that the quasigroup post-processing method for physical random
numbers described in [MGK05] is ineffective and very easy to attack.

We have also shown that there are post-processing functions with a fixed
number of input bits for biased physical random number generators which are
much better than the ones usually used up to now.

The results of section 4 of this paper can be extended in many directions: e.
g. compression rates greater than 2, other input sizes, systematic construction
of good post-processing functions.
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