
A Unified Approach to Related-Key Attacks

Eli Biham1,�, Orr Dunkelman2,��, and Nathan Keller3,� � �

1Computer Science Department, Technion.
Haifa 32000, Israel

biham@cs.technion.ac.il
2ESAT/SCD-COSIC, Katholieke Universiteit Leuven

Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
orr.dunkelman@esat.kuleuven.be

3Einstein Institute of Mathematics, Hebrew University.
Jerusalem 91904, Israel

nkeller@math.huji.ac.il

Abstract. This paper introduces a new framework and a generalization of the various
flavors of related-key attacks. The new framework allows for combining all the previous
related-key attacks into a complex, but much more powerful attack. The new attack is
independent of the number of rounds of the cipher. This property holds even when the
round functions of the cipher use different subkeys.
The strength of our new method is demonstrated by an attack on 4r-round IDEA, for any
r. This attack is the first attack on a widely deployed block cipher which is independent
of the number of rounds. The variant of the attack with r = 2 is the first known attack
on 8-round IDEA.

1 Introduction

In many applications the same block cipher is used with two unknown keys whose relation
is known. To study the security of block ciphers in these situations the Related-key attacks
framework was first presented in 1993 [3]. In a related-key attack, the attacker is allowed to
ask for plaintexts encrypted under two (or more) related keys. This approach might seem
unrealistic, as it assumes that the attacker can control some relations between the unknown
keys. Still, there are some instances, e.g., the 2PKDP protocol [43], where this approach suggests
practical attacks.

A block cipher susceptible to a related-key attack has some security concerns. It may not be
suitable for other cryptographic primitives that use block ciphers as building blocks, e.g., hash
functions. A famous example for this claim is the block cipher TEA [45]. A related-key property
of TEA [33] was used in hacking Microsoft’s Xbox architecture, which uses a Davies-Meyer hash
function employing TEA as the underlying block cipher [46]. Another security concern is the
fact that such a cipher cannot be used in protocols which allow key manipulation, such as the
ones used in most inter-bank communications in the US which increment the key by one in
each transaction. Sometimes, the security of the mode of operation of the block cipher is closely
related to the immunity of the cipher to related-key attacks (as in the 3GPP case, as was shown
in [29]).
� This work was supported in part by the Israel MOD Research and Technology Unit.

�� This work was supported in part by the Concerted Research Action (GOA) Ambiorics 2005/11 of
the Flemish Government and by the IAP Programme P6/26 BCRYPT of the Belgian State (Belgian
Science Policy).

� � � The research presented in this paper was supported by the Adams fellowship.



There are two classes of related-key attacks: The first class, originally presented by Biham [3]
and independently by Knudsen [36], are attacks that use related-key plaintext pairs. These
attacks use pairs of keys for which most of the encryption function is equivalent. Such relations
exist when the key schedule is very simple. Also, in order for the attacks to succeed, the round
functions have to be relatively weak (i.e., there exists a known plaintext attack on the round
function given one or two input/output pairs). On the other hand, once such a relation can be
found, it can be used to devise an attack on the cipher, where the attack is independent of the
number of rounds.

The second class of related-key attacks, originally presented by Kelsey et al. [32, 33] is
composed of attacks that treat the key relation as another freedom level in the examination of
statistical properties of the cipher. Besides related-key differentials, where the key difference is
used to control the evolution of differences, this class contains variants of most of the known
cryptanalytic techniques: The SQUARE attack [20] was treated in the related-key model in [23]
and used to extend the best known SQUARE attack against AES into a related-key attack that
uses 256 related keys. The boomerang attack [44] and the rectangle attack [5] were combined
with related-key differentials to introduce the related-key boomerang and related-key rectangle
attacks [7, 28, 35]. Finally, linear cryptanalysis [38] was also combined with related-key attacks
to produce a related-key attack on 7.5-round IDEA [8]. The second class of attacks can deal
with much more complex key schedules and round functions, but their effectiveness (usually)
drops with the number of rounds.

In this paper we unify the main ideas from the two classes of related-key attacks into one
framework. The new framework has two main advantages:

1. A new approach for generating multiple related-key plaintext pairs, based on multiple en-
cryptions under chains of related keys. When the key schedule has a short cycle, it is possible
to obtain many related-key plaintext pairs from one pair using encryption under several
keys. This technique allows to mount attacks on round functions that require more than
two input/output pairs.

2. A combination of the two classes of attacks to allow a related-key attack on the underlying
round function (rather than applying only a simple attack on the round function).

Thus, the unified approach allows attacking more ciphers, as the restrictions on the key schedule
and on the round functions are significantly reduced.

To demonstrate the strength of the new technique, we apply our new attack to 4r-round
IDEA [37]. IDEA is a 64-bit block cipher with 128-bit keys, which was introduced by Lai and
Massey in 1991. IDEA was thoroughly analyzed [1, 4, 7–9, 12, 16, 18, 19, 21, 22, 26, 27, 31, 39–41]
but the best known attack on the cipher is against 7.5-round IDEA (out of 8.5 rounds) in the
related-key model [8], and 6-round IDEA in the single key model [9].

We first introduce a related-key attack on 4-round IDEA. Then, using our new framework,
we elevate this attack to any 4r-round IDEA, presenting the first attack on IDEA that is
independent of the number of rounds. The variant of the attack with r = 2 is the first known
attack on 8-round IDEA.

The remainder of this paper is organized as follows: In Section 2 we present the various
related-key attacks. We incorporate all the attacks into the new related-key framework in Sec-
tion 3. Section 4 describes our attack on 4r-round IDEA. Appendix A contains a short descrip-
tion of IDEA. Appendix B gives the full description of the 4-round related-key differential of
IDEA we use in our attack. In Appendix C we outline a different attack algorithm on 4r-round
IDEA (with roughly the same data and time complexities). We conclude the paper in Section 5.
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2 Previous Work

Related-key attacks exploit the relations between the encryption processes under different but
related keys. Related-key attacks can be divided into two classes. The first class is attacks
concentrated on detecting and exploiting related-key plaintext pairs, and the second class is
adaptation of the standard cryptanalytic attacks into the related-key model.

2.1 Related-Key Attacks Exploiting Related-Key Plaintext Pairs

The original variant of related-key attacks introduced in [3, 36] is attacks exploiting related-
key plaintext pairs. The main idea behind the attack is to find instances of keys for which
the encryption processes deploy the same permutation (or almost the same permutation). To
illustrate the technique, we shortly present the attack from [3].

Consider a variant of DES in which all the rotate left operations in the key schedule algo-
rithm are by a fixed number of bits.1 For any key K1 there exists another key K2 such that
the round subkeys KR1

i , KR2
i produced by K1 and K2, respectively, satisfy:

KR1
i+1 = KR2

i , for i = 1, . . . , 15.

For such pair of keys, if a pair of plaintexts (P1, P2) satisfies P2 = fKR1
1
(P1), where fsk(P )

denotes one round DES encryption of P under the subkey sk, then the corresponding ciphertexts
C1 and C2 satisfy C2 = fKR2

16
(C1). Given such a pair of plaintexts (called in the sequel a

related-key plaintext pair), the subkeys KR2
16 and KR1

1 can be easily extracted [3].
Throughout the paper we shall refer to the round in which the key is recovered as the

underlying round function. This kind of related-key attacks is based on finding related-key
plaintext pairs, which are then used to extract an input/output pair (or two pairs) to the
round function. Once the input/output pair to the underlying round function is given, the
attacker applies a cryptanalytic attack on the underlying round function and retrieves the key.

In the above attack, the attacker asks for the encryption of two pools of 216 chosen plaintexts
under two (unknown) related keys K1, K2. The plaintexts in the first pool, denoted by S1, are
of the form (X, A) and are encrypted under K1, and the plaintexts in the second pool, denoted
by S2, are of the form (A, Y ) and are encrypted under K2, where A is some fixed 32-bit value
and X, Y vary.

The attacker then finds pairs of ciphertexts (C1, C2), such that the first ciphertext belongs
to S1 and the second one belongs to S2 and such that the left half of C1 equals to the right half
of C2. Once such a pair is found, then there is a good chance that P1 and P2, the corresponding
plaintexts, satisfy that P2 = fKR1

1
(P1). If this is the case, then the pair (P1, P2) is a related-key

plaintext pair, and it can be used to retrieve the values of KR2
16 and KR1

1. It can be shown
that with a high probability, if the pair is not a related-key plaintext pair, this procedure yields
a contradiction, and hence, once a consistent value for KR2

16 and KR1
1 is suggested by the

attack, it is the correct value with high probability.
The data complexity of the attack is 217 chosen plaintexts, and the time complexity of the

attack is 217 encryptions as well. We note that even if there were more rounds in the modified
version of DES, the attack would still be successful.

In the more general case, this class of related-key attacks is composed of three parts: Ob-
taining related-key plaintexts, identifying the related-key plaintext pairs, and using them to
deduce the key. In many cases, identifying the related-key plaintext pairs is best achieved by
assuming for each candidate pair that it is a related-key plaintext pair, and then using it as an
1 Such a variant was proposed by Brown and Seberry [17].
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input for the key recovery phase of the attack. In other cases, the round functions’ weaknesses
allow the attacker to identify these pairs easily.

The attack relies heavily on the simplicity of the key schedule, the similarity of the rounds,
and on the cryptographic weakness of the underlying round function. As a result, most of the
known block ciphers are immune to related-key attacks of this class.

2.2 Slide Attacks

When a cipher has self-related keys, i.e., it can be written as Ek = f �
k = fk ◦ fk ◦ · · · ◦ fk it is

susceptible to a variant of the related-key attack called the slide attack [13]. In this case, it is
possible to apply the related-key attack to the cipher with K1 = K2, thus eliminating the key
requirement of having two keys. The attacker looks for a slid pair, i.e., two plaintexts (P1, P2)
such that P2 = fk(P1). In this case, the pair satisfies C2 = fk(C1) as well. When the round
function fk is simple enough, it is possible to use these two pairs in order to deduce information
about the key.

In the slide attack the attacker obtains enough plaintext/ciphertext pairs to contain a slid
pair, and has to check for each possible pair of plaintexts whether it is a slid pair by applying
the attack on fk. When dealing with a general block cipher this approach requires O(2n/2)
known plaintexts and O(2n) applications of the attack on fk, where n is the block size. For
Feistel block ciphers, the attack can be optimized using O(2n/4) chosen plaintexts and O(1)
applications of the attack. Note that as in the original related-key attacks, the main drawback
of this approach is that the attack can be used only if fk can be broken using only two known
input/output pairs, i.e., given one slid pair.

In 2000, Biryukov and Wagner [14] presented two variants of the slide attack, named com-
plementation slide and sliding with a twist. These variants allow for treating more complex
functions in the slide attack. Nevertheless, there are no widely used ciphers that can be at-
tacked using these techniques.

The authors of [14] also presented several techniques aimed at finding several slid pairs
simultaneously, enabling to use the attack even if several input/output pairs are needed for
attacking fk. One of these techniques, fully explored by Furuya [24], uses the fact that when
(P1, P2) is a slid pair then (Et

k(P1), Et
k(P2)) are also slid pairs for all values of t.2 This allows

the attacker to transform any known plaintext attack on fk that requires m known plaintexts
to an attack on Ek with a data complexity of O(m · 2n/2) adaptively chosen plaintexts. The
time complexity of this approach is O(2n) applications of the known plaintext attack on fk.3

2.3 Attacks Adapting Standard Techniques to the Related-Key Model

The related-key model can be used as a platform for all standard attacks. This fact was first
noted in [32, 33] where related-key differentials were introduced. Recall, that a regular differen-
tial deals with some plaintext difference ΔP and a ciphertext difference ΔC such that

Pr P,K [EK(P ) ⊕ EK(P ⊕ ΔP ) = ΔC]

is high enough. A related-key differential is a triplet of a plaintext difference ΔP , a ciphertext
difference ΔC, and a key difference ΔK, such that

Pr P,K [EK(P ) ⊕ EK⊕ΔK(P ⊕ ΔP ) = ΔC]
2 Throughout the paper the notation F i(·) means i successive applications of F (·).
3 It is worth mentioning that the technique can be easily improved in the case of Feistel ciphers, for

which O(2n/4) chosen plaintexts and O(m) adaptive chosen plaintexts are sufficient to achieve m
slid pairs, which are easily identified.
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is high enough.
The related-key differential attack uses the subkey differences to control the development of

differences through the encryption process. As a result, related-key differentials are usually much
stronger than the respective “ordinary” differentials. The related-key differential technique was
used to attack numerous block ciphers, including GOST, TEA, and 6-round KASUMI.

For example, using this approach a 60-round related-key differential with probability 2−30 of
TEA is presented. Using this related-key differential, it is possible to break the full TEA (with
64 rounds) using about 232 related-key chosen plaintexts and a small computational effort [33].

After the introduction of impossible differentials, i.e., differentials with zero probability,
in [4], the concept of related-key impossible differentials was presented [30]. In this case, the
subkey relations are used to ensure that the input difference of the impossible differential can
not evolve into the output difference. This technique was used to analyze 8-round AES-192.

Related-key differentials were also used as the base for the related-key boomerang and the
related-key rectangle attacks [7, 28, 35]. These attacks use two related-key differentials, i.e.,
up to four related keys. Hence, they enjoy the transition into related-key differentials twice,
leading to much higher probabilities for the distinguisher (in exchange for more related keys).
The related-key rectangle technique was successfully applied to several block ciphers, including
10-round AES-192, 10-round AES-256, the full SHACAL-1, the full KASUMI, and 7-round
IDEA.

In [23] it is showed that the SQUARE attack can also be improved in the related-key model.
The 4-round SQUARE property of AES used in the regular SQUARE attack, is extended into a
5-round related-key SQUARE property for AES-256. As a result, while the ordinary SQUARE
technique can be used to attack up to 7 rounds of AES, the related-key SQUARE attack is
applicable to a 9-round variant of AES.

Finally, even linear relations can be improved in the related-key model. In [8] a 2.5-round
linear relation of IDEA is presented. When two related keys are used, this linear relation can
be extended to a 4.5-round linear relation. This extension improves the regular attack on IDEA
by 2.5 rounds, and is the best known attack so far against IDEA.

3 The Unified Related-Key Framework

In this section we present the new framework unifying the different related-key attacks. The
construction of the framework is divided into two stages:

– First, we present a new approach to generating multiple related-key plaintext pairs, based
on encryption under chains of related keys. This approach allows to mount a related-key
attack on the entire cipher, even if the attack on the underlying function requires multiple
input/output pairs.

– Then, we unify the two classes of related-key attacks into a single framework. This allows
to use a related-key attack on the underlying round function. Thus, even if the underlying
round function is secure against regular cryptanalytic attacks, it can still be attacked using
a related-key attack.

3.1 A New Approach For Generating Multiple Related-Key Plaintext Pairs

When a cipher can be written as Ek = f �
k = fk ◦ fk ◦ · · · ◦ fk and the slide attack can be

applied, any slid pair (P, Q) can be used to generate many additional slid pairs of the form
(Et

k(P ), Et
k(Q)), for all t. These pairs can be used to devise a slide attack on the cipher even

if multiple input/output pairs are required to break the underlying round function. However,
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this property exists only since the relation between the plaintexts of the slid pair is similar to
the relation between the ciphertexts. If the plaintexts satisfy Q = fk(P ) then the ciphertexts
satisfy Ek(Q) = fk(Ek(P )), and thus can be treated as the plaintexts in a new slid pair.

For an encryption with different subkeys, i.e., when EK = fkr ◦fkr−1 ◦ · · ·◦fk1, the situation
is more complicated. The plaintexts of a related-key plaintext pair satisfy Q = fk1(P ), but the
respective ciphertexts satisfy Ek(Q) = f“kr+1”(Ek(P )).4 Hence, unless k1 = “kr+1”, multiple
encryption does not yield additional related-key plaintext pairs.

Our new approach uses chains of keys in order to achieve the additional related-key plaintext
pairs. Let EK = fkr ◦ fkr−1 ◦ · · · ◦ fk1 , and let (P 1, Q1) be a related-key plaintext pair (with
the corresponding ciphertexts (P 2, Q2)) with respect to the keys (K1

P , K1
Q), i.e., kP1

i+1 = kQ1
i ,

and f
k

P1
1

(P 1) = Q1. Then, if K2
P is a key such that kP2

1 = kQ1
r , then f

k
P2
1

(P 2) = Q2. Moreover,

let K2
Q satisfy that kP2

i+1 = kQ2
i , then (P 2, Q2) is a related-key plaintext pair with respect to

(K2
P , K2

Q).
Defining K2

P as a function of K1
P is usually very simple, and usually it is the key that

produces the next r subkeys if the key schedule would have been extended by r rounds. Formally,
there are cases in which there exists a function g(·) such that for every pair of keys (K1

P , K2
P =

g(K1
P )), and the key K1

Q related to K1
P , we have kP2

1 = kQ1
r . For example, in the modified variant

of DES considered in Section 2, g can be the rotation of the key by 16 times the rotation in each
round. Examples of real ciphers for which such g exists are 4r-IDEA and the full SHACAL-1.
In IDEA, where each fki represents 4 rounds, we have g(K) = K ≪ (75 · r). For SHACAL-1,
g(K) is obtained from K by running the LFSR used in the key schedule of the cipher 80 steps
forward.

Assume now that for the examined cipher there exists a function g as described above. If
the pair (P 1, Q1) is a related-key plaintext pair with respect to the keys (K1

P , K1
Q), then the

corresponding ciphertext pair (P 2, Q2) is a related-key plaintext pair with respect to the keys
(g(K1

P ), K2
Q), where K2

Q is the key related to g(K1
P ) (and in many cases it is g(K1

Q)).
This process can be repeated to achieve multiple related-key plaintext pairs with respect

to different pairs of related keys. We define Ht
KP

= Egt−1(KP ) ◦ Egt−2(KP ) ◦ . . . ◦ EKP and
similarly Ht

KQ
= Egt−1(KQ) ◦ Egt−2(KQ) ◦ . . . ◦ EKQ . If (P 1, Q1) is a related-key plaintext pair

with respect to (KP , KQ), then the pair (Ht
KP

(P 1), Ht
KQ

(Q1)) is a related-key plaintext with
respect to (gt(KP ), gt(KQ)).

While in some cases obtaining many related-key plaintext pairs under different keys might
be useful, we have not identified a concrete example where it can be used as is. We do note that
for some specific cases this property can be used to identify the related-key plaintext pairs more
easily. Assume that the related-key plaintext pair satisfies some relation in the ciphertexts which
is not sufficient for the immediate identification of the related-key plaintext pair (for example,
n/4 bits out of the n bits of the ciphertexts have to be equal). It is possible to identify the
related-key plaintext pair by using the fact that a related-key plaintext pair is expanded into
several such ones.

In most cases though, the attack on the underlying function requires several input/output
pairs encrypted under the same key. However, we note that if for some t, gt(K1

P ) = K1
P , we

can get more related-key plaintext pairs under the original key pair (K1
P , K1

Q). We outline the
evolution of such a pair in Figure 1

For example, in 4r-IDEA the cycle length of g for all the keys equals at most 64. Hence,
using the algorithm presented above we can generate efficiently many related-key plaintext pairs

4 “kr+1” is the rth subkey produced by the second key. It can be treated as the r+1th subkey produced
by the first key.
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P 1 P 2 P 3 P t P t+1

kP1
1 kP1

2 kP1
r

EK1
P

kP2
1 kP2

2

EK2
P

EKi
P

kP1
1 kP1

2

EK1
P

Q1 Q2 Q3 Qt Qt+1
kP1
1 kP1

2 kQ1
r

EK1
Q

kQ2
1 kQ2

2

EK2
Q

EKi
Q

kQ1
1 kQ1

2

EK1
Q

Dashed line stands for equal values.

Fig. 1. The Evolution of Multiple Related-Key Plaintext Pair

encrypted under the same pair of related keys. For block ciphers whose key schedule is based
on LFSRs, e.g., SHACAL-1, the cycle size is lcm(r, l) where l is the cycle length of the LFSR
and r is the number of rounds of the cipher.

After obtaining enough related-key plaintext pairs under the keys (KP , KQ) it is possible to
mount any known plaintext attack on the underlying round function, similarly to the slide case.
If sufficiently many known plaintexts are available, then it might be possible to mount chosen
plaintext attacks, or even adaptive chosen plaintext attacks. Therefore, the new approach for
the generation of related-key plaintext pairs allows to mount the related-key attack even if the
underlying function is not a weak one.

Our above observation can be used as-is, or in conjunction with the method we describe in
the following section. We note that the data and time complexities required for the generation
of the sequence are discussed separately, as they depend heavily on the structure of the analyzed
cipher.5

3.2 A New Approach for Attacking the Underlying Round Functions

The method described in the previous section enables the attacker to produce many related-
key plaintext pairs given one such pair. As noted earlier, these pairs can be used to mount
any regular key recovery attack on the underlying round function. However, in many cases, no
such attacks exist, while there is a related-key attack on the underlying round function, e.g., a
related-key differential attack.

Our new framework allows to combine the related-key structure with a related-key attack on
the underlying function. The main feature of the new framework is examining and comparing
several chains of related-key plaintext pairs encrypted under different (but related) pairs of
related keys.

Recall that Ek = fkr ◦ fkr−1 ◦ · · · ◦ fk1 , and assume that there exists a related-key attack
on f(·). We shall describe the case of a related-key attack that requires two related keys, but
related-key attacks which require more keys can be easily integrated into this framework.

Assume that the related-key attack on f(·) uses two related keys k1 and k̂1. We denote the
data used in the attack by the set of input/output pairs (I1, O1), (I2, O2), . . . encrypted under
k1, and the set of input/output pairs (Î1, Ô1), (Î2, Ô2), . . . encrypted under k̂1. There might
5 For the sake of simplicity, we describe only attacks that use pairs encrypted under the same pair

of related keys. In some cases, the attack can be improved by aggregating the information obtained
from several pools of related-key plaintext pairs encrypted under different pairs of related keys.
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be some relation between the inputs, e.g., in the case of a related-key differential attack, the
relation between the inputs is Ij ⊕ Îj = ΔIN .

Our unified attack allows to mount the attack on fk1(·) although the outputs of fk1(·) are
not immediately available to the attacker. The outputs are detected as the related-key plaintext
counterparts of the inputs (if more than one input/output pair is needed under a single pair of
keys, they can be generated using the approach provided in Section 3.1).

The basic algorithm of the unified attack is the following:

1. Pick two plaintexts P and R. For every possible pair of plaintexts Q and S, perform the
following:
(a) Assume that (P, Q) is a related-key plaintext pair with respect to the keys (KP , KQ)

and generate from them a chain of related-key plaintext pairs (P t, Qt) with respect to
the same pair of keys.

(b) Assume that (R, S) is a related-key plaintext pair with respect to the keys (KR, KS)
and generate from them a chain of related-key plaintext pairs (Rm, Sm) with respect
to the same pair of keys.

(c) Detect a set of (P ti , Qti) such that P ti = Ii, and let Oi = Qti .
(d) Detect a set of (Rmj , Smj ) such that Rmj = Îj , and let Ôj = Smj .
(e) Apply the related-key attack on fk1(·) and fk̂1

(·) using the inputs I1, I2, . . . and Î1, Î2, . . .

and the corresponding outputs O1, O2, . . . and Ô1, Ô2, . . ..
2. If for all the checked pairs Q and S the related-key attack on fk1 fails, repeat Step 1 with

a different choice of P and R.

The unified attack considers simultaneously two chains {(P t, Qt)} and {(Rm, Sm)} en-
crypted under different pairs of related keys. Each chain contains a set of input/output pairs
for the round functions fk1 and fk̂1

, thus allowing to apply the related-key attack. We outline
these chains of plaintexts and their relations in Figure 2.

Our new approach increases the problem of identifying the related-key plaintext pairs. Now,
the attacker has to find two related-key plaintext pairs (P, Q) and (R, S) rather than only one.

The general algorithm can be improved in many cases. The relations between Ii’s and Oi’s
can be used to reduce the number of related-key plaintext counterparts corresponding to P
and (independently) to R [3, 13]. For example, if f(·) is one round of a Feistel cipher, then the
number of possible counterparts of P (and of R) is greatly reduced. If there exists a relation
between the values of Oi’s and the values of Ôj ’s they can be used as well to reduce the need
of trying all possible pairs of pairs ((P, Q) and (R, S)). We observe that the possible number of
counterparts can further be reduced using relations between the chains. For example, assume
that there exists a related-key differential of f(·) that predicts that with high probability the
input difference α becomes an output difference β. In this case, obtaining the first related-key
plaintext pair (P, Q) suggests that with a high probability (R = P ⊕ α, S = Q ⊕ β) is also a
related-key plaintext pair. We note that in the case of the slide attack, a similar improvement
is suggested in [14].

3.3 Comparison with Other Related-Key Attacks

The main drawback of our proposed framework is the fact that the new attack requires en-
cryption under multiple related keys. Hence, in order to measure the effectiveness of the new
framework, it is not sufficient to compare it with the classic generic attacks, such as exhaustive
key search and dictionary attacks. The framework should be compared also to generic attacks
that allow the attacker to use encryption under multiple related keys. In this section we consider
two attacks of this class.
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P 1 P 2 P 3 P 4 P 5

Q1 Q2 Q3 Q4 Q5

R1 R2 R3 R4 R5

S1 S2 S3 S4 S5
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EK1
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EK1
Q

EK1
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EK1
S

EK2
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EK2
Q

EK2
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EK2
S
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P
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Q
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R

EK3
S
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Q
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R

EKt
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I2
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Î1

Ô1
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(P i, Qi) are related-key plaintext pairs with respect to (Ki
P , Ki

Q).

(Rj , Sj) are related-key plaintext pairs with respect to (Kj
R, Kj

S).
(Ii, Oi) are input/output pairs for the related-key attack on f(·) for the first key.
(Îi, Ôi) are input/output pairs for the related-key attack on f(·) for the second key.

Fig. 2. Overview of the Related-Key Plaintext Pairs Used in the Unified Attack

The first attack is a generic time-memory-key trade-off attack suggested in [11]. In the
classic time-memory trade-off attack on block ciphers, if the number of keys is N , the available
memory is M , and the time complexity of the on-line step of the attack is T , then N2 =
TM2. In addition, the attack requires a precomputation step of N operations. In [11] the
authors show that if the attacker is able to ask for encryptions under D related keys, then the
complexities of the attack can be reduced according to the curve (N/D)2 = TM2. The length
of the precomputation step is also reduced to N/D.

In view of this generic attack, it seems that an attack requiring encryption under D related
keys should be compared to an exhaustive search over a space of N/D keys or to a classic
time-memory tradeoff attack over such key space.6

The second attack is the generic attack presented in [2]. The attack uses the fact that if for
any block cipher a key is periodic, i.e., can be rotated to itself, this can be identified easily using
a few related-key queries. Actually, this property defines a weak key class for all block ciphers.
In the attack, the attacker asks for the encryption under various keys, tracing the relation of
the keys to the original key, and checks whether the related keys fall into the weak key class.

We note that the attack can be applied with other weak key classes as well. In general, if
the size of a weak key class is WK and the total number of possible keys is N , the attack is

6 We note that the time-memory-key attack recovers only one of the related keys. However, the other
keys can be easily found using the relations between the related keys. Also note that if the relation
between the keys is correlated to the tables constructed in the time-memory-key attack, the attack
might fail.
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expected to require N/WK related keys. For the generic weak-key class presented in [2], the
attack requires 2N/2 related keys and a few chosen plaintext queries under each of the keys.

The attack presented in Section 4.2 requires 256 related keys, has a memory complexity of
266 and a time complexity of 2100 for a 128-bit key cipher. Hence, its complexity is better than
that of the corresponding time-memory-key tradeoff attack. It also compares favorably with
the generic attack presented in [2] since for such a small amount of related keys the success
probability of the generic attack is 2−56.

4 Attacking 4r-Round IDEA

IDEA is a 64-bit, 8.5-round block cipher with 128-bit keys [37]. IDEA is a composition of
XOR operations, additions modulo 216, and multiplications over the field GF (216 +1). The full
description of IDEA is given in Appendix A.

4.1 Observations on IDEA Used in the Attack

Our attack on IDEA is based on the following two observations:

1. The key schedule of IDEA has the following property: If the original key is rotated by
75 bits to the left and entered into the key schedule algorithm, the resulting subkeys of
rounds 1–4 are the same as the subkeys of rounds 5–8 for the original key. Hence, we can
treat 4r-IDEA as a cascade of r 4-round IDEA components.

2. There exists a related-key truncated differential on 4-round IDEA. The key difference of
the differential is in bits 25 and 48. The input difference of the differential is ΔIN =
(0, 8040x, 0, 0) and the fourth input word is set to 1. This input difference leads to an
output difference ΔOUT = (a, a, b, b), where a and b are some (not necessarily different) 16-
bit values, with probability of 2−17. The related-key truncated differential is fully described
in Appendix B.

We denote four rounds of IDEA with key k (i.e., the first 128 bits that are used as subkeys),
by 4IDEAk. Thus, a 4r-round IDEA with a key K can be described as

EK(P ) = 4IDEAK≪75·(r−1)(. . . (4IDEAK≪75(4IDEAK(P )))),

where ≪ is the rotate left operation. The attack on 4r-round IDEA uses the unified related-key
framework. The cipher is treated as a cascade of r 4-round components, and the related-key
truncated differential is used to attack the underlying function, i.e., 4-round IDEA.

A pair of ciphertexts C1 = (C1
1 , C1

2 , C1
3 , C1

4 ) and C2 = (C2
1 , C2

2 , C2
3 , C2

4 ) that satisfy the
output difference ΔOUT satisfy that

C1
1 ⊕ C2

1 = C1
2 ⊕ C2

2 and C1
3 ⊕ C2

3 = C1
4 ⊕ C2

4

These relations can be easily rewritten into:

C1
1 ⊕ C1

2 = C2
1 ⊕ C2

2 and C1
3 ⊕ C1

4 = C2
3 ⊕ C2

4

Thus, we define the function evaluate(C), to efficiently help us to determine right pairs:

evalute(C = (C1, C2, C3, C4)) = C1 ⊕ C2||C3 ⊕ C4.

Thus, in order to check whether two values (C1, C2) satisfy the output difference of the related-
key differential, it is sufficient to check whether evaluate(C1) = evaluate(C2).
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For the sake of simplicity we shall describe the attack on 8-round IDEA. The changes
needed for attacking 4r-round IDEA with r �= 2 are relatively small (and are mainly in the
data generation phase).

The attack has three main steps. The first one is data generation, where chains of plaintexts
are generated according to the framework we described in the previous section. The purpose of
the chains is to produce several related-key plaintext pairs simultaneously. The second step is
composed of analyzing the chains and trying to find the related-key plaintext pairs efficiently.
This step is performed by using the key recovery step (the third one). The last step is the key
recovery step, in which the candidates for being related-key plaintext pairs are used for key
recovery. Once sufficiently many related-key plaintext pairs are found, so does the right key.

For sake of simplicity we assume that the chains of plaintexts generated in the attack
compose the entire code book, i.e., all plaintexts are there. The cases when this assumption
does not hold are discussed in Section 4.4. As long as the chains contain enough related-key
plaintext pairs, our attack works. To justify the assumption we made, we note that starting
with a chain which does not contain enough plaintexts is highly unlikely.

4.2 The Attack Algorithm

1. Data Generation:
(a) Let KP be the unknown key, and let KQ = KP ≪ 75. Let KR = KP ⊕ e25,48, i.e., KR

is the same as KP in all bits but bits 25 and 48. Finally, let KS = KR ≪ 75. Pick
randomly four plaintexts: P 0

0 , Q75
0 , R0

0, S
75
0 .

(b) Starting from P 0
0 and KP compute the following chain:

P l+22 mod 128
i =

{
EKP ≪l(P �

i ) if l + 22 �≡ 0 mod 128
EKP ≪l(P �

i−1) if l + 22 ≡ 0 mod 128

Continue till P 0
0 is about to be encrypted under KP again (according to our assumption

— after 264 encryptions under KP ). We denote this chain by ChainP .
(c) Compute ChainQ starting from Q75

0 as the plaintext and KQ as the key, using the same
process.

(d) Denote by KR = KP ⊕ e25,48, Pick a plaintext R0
0 randomly, and repeat the previous

step with the key KR to obtain the chain ChainR = R0
0, R

22
0 , . . . , R106

264−1.
(e) Pick a plaintext S75

0 randomly and perform the same operation in the previous step with
the key KS = KR ≪ 75, obtaining the chain ChainS = S75

0 , S97
0 , . . . , S75

1 , . . . , S53
264−1.

For sake of simplicity, we assume that each of the four chains covers all possible plain-
texts (i.e., each plaintext is encrypted under every key of the chain). We deal with the
case of several chains in Section 4.4.

2. Analyzing the Chains: Locate a set of 236 pairs of plaintexts (P 0
i1

, P 0
i2

) in ChainP whose
fourth word equals 1 for both plaintexts. For each such pair:
(a) Compute the values of j1 and j2, such that R0

j1 = P 0
i1 ⊕ ΔIN and R0

j2 = P 0
i2 ⊕ ΔIN .

(b) For each S75
m ∈ ChainS store the 64-bit value valueS = evaluate(S75

m )||evaluate(S75
m+j2−j1

)
along with m in a table TableS indexed by the computed value.

(c) For each Q75
l ∈ ChainQ perform:

– Compute the 64-bit value valueQ = evaluate(Q75
l )||evaluate(Q75

l+i2−i1
). Search for

valueQ in TableS.
– For each possible value of m associated with valueQ, check whether

Q75
l = 4IDEAKP (P 0

i1 ); Q75
l+i2−i1 = 4IDEAKP (P 0

i2);
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S75
m = 4IDEAKR(R0

j1 ); S75
m+j2−j1 = 4IDEAKR(R0

j2)

using the key recovery attack that uses the respective pairs (we outline this attack
later), where 4IDEA denotes 4-round IDEA. If the key recovery attack succeeds,
the key is found.

ChainP and ChainQ contains input/output pairs to 4IDEAKP (·) whose order is unknown. The
same is true for ChainR and ChainS with respect to 4IDEAKR(·). The attack tries all the
possible shifts between ChainP and ChainQ (for which one is the correct shift). To prevent the
need of checking all the shifts between ChainR and ChainS, we use the related-key truncated
differential. The key difference between KP and KR is the key difference of the differential,
which means that an input pair (P 0

i , R0
j = P 0

i ⊕ΔIN ) is more likely to have the corresponding
outputs (Q75

l , S75
m ) satisfying the output difference of the differential.

The attack algorithm first tries to find the shift between ChainP and ChainQ. For each such
shift, we assume it is the correct one and we find 236 pairs of pairs (P 0

i1
, R0

j1
) and (P 0

i2
, R0

j2
)

with difference ΔIN . If indeed the shift was correct, the probability that the corresponding
outputs satisfy the output difference (twice) is 2−34, and thus, the only remaining problem is
finding the corresponding outputs. For the ChainP , as we know the shift of ChainQ we know
the outputs. Thus, we only need to find the shift of ChainS with respect to ChainR.

The last task is achieved by observing that if S75
m is the output of Rj1 , then S75

m+j2−j1
is the

output of Rj2 . Thus, we compute for each S75
m the value of evaluate(S75

m )||evalaute(S75
m+j2−j1

).
Similarly, if Q75

l is the output of P 0
i1 , then Q75

l+i2−i1
is the output of P 0

i2 . If indeed the pairs
(P 0

i1
, R0

j1
) and (P 0

i2
, R0

j2
) satisfy the differential, then it must hold that evaluate(S75

m ) = evalute(Q75
l )

and that evalaute(S75
m+j2−j1

) = evalaute(Q75
l+i2−i1

). Thus, the attack succeeds in retrieving the
right shift of ChainS with respect to ChainR given the right shift of ChainQ with respect to
ChainP .

The most basic attack retrieves the subkey bits involved in the last MA layer (by finding
the key value for which both pairs have a zero difference before the MA layer). An additional
fast filtering of wrong subkey values can be performed using the first round of the truncated
differential (verifying that indeed during the first KA layer the difference in the second word
becomes 8000x).

If indeed the related-key plaintext pairs are the ones analyzed, then there is a probability
of 2−34 that the attack succeeds (as both pairs should be right pairs for the attack to succeed).
If this is not the case, then it is highly unlikely that the key recovery attack succeeds. We first
note that for any value of Q75

l we expect about one suggestion for the value of m. Then, the
probability that two wrong pairs (or even one wrong pair and one right pair) agree on the key
for the fourth round MA layer is 2−32. Considering the additional filtering based on the first
round as well, the probability that a wrong Q75

l leads to a consistent key suggestion is 2−34.
Thus, it is expected that of the 264 possible relations for a given P 0

i1 and P 0
i2 , only 230

values of Q75
l may seem suitable, and these can be easily discarded using an additional “pair”

of related-key plaintexts and ciphertexts.

4.3 The Time Complexity of the Attack

The first step of the attack is composed of constructing four chains. Each such chain requires the
encryption of 264 values, each under 64 keys. Thus, the time complexity of the data generation
is 4 · 64 · 264 = 272 encryptions.

The time complexity of Step 2 is mostly dominated by Step 2(c). It is easy to see that
using a well chosen data structure, Step 2(a) takes a relatively small number of operations for
each pair. For each of the 236 pairs (P 0

i1
, P 0

i2
), the time complexity of Step 2(b) is about 264
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operations. Step 2(c) is repeating 264 times a basic operation and a key recovery attack. The
key recovery attack can be efficiently simulated using two table lookups (to a table suggesting
for each pair the respective MA layer subkey). Thus, the time complexity of Step 2 is about
236+64 = 2100 operations.7

We conclude that the attack requires 272 related-key chosen plaintexts, and has a time
complexity of about 2100 operations.

The memory complexity of the attack is dominated by the stored data and the table con-
taining valueS. Thus, the total memory required by our attack is at most 4 · 264 blocks of
memory for the data, and additional 264 entries of the form m||valueS (which take two blocks
of memory each). Thus, the total memory used by the attack is at most 48 · 264 bytes (which
are 6 · 264 blocks of 64 bits).

4.4 Dealing with Multiple Chains

When the chains do not cover the entire plaintext space, then the attack algorithm has to be
tweaked a bit to ensure success. We first note that we can divide the entire plaintext space into
multiple chains, i.e., ChainP1 , ChainP2 , . . . , and equivalent ChainQ1 , ChainQ2 , . . . . Then, we
wait till 236 pairs of values (P 0

i1
, P 0

i2
) that can be used in the attack are encountered in some

chain ChainPn .
We can treat the chains as generated by a random permutation over the plaintext space

of a given key, e.g., KP . Hence, the analysis of [25] can be applied, revealing that the longest
chain is expected to cover about 263 plaintexts (for a given key), that the second longest chain
covers about 262 plaintexts, etc.

As in the original description, we start from a random plaintext and start generating the
chain. With high probability this plaintext belongs to one of the longest chains. Doing the
same for the generation of the other chains, we are expected to find chains of the same length,
i.e., ChainPi and ChainQi of the same length, and ChainRj and ChainSj of the same length.
As the existence of a related key plaintext pair in the two chains ChainPi and ChainQi can
happen only if their length is the same, then this can improve the attack, by first generating
the chains, and then reducing the number of candidate related-key plaintext pairs by taking
the chain lengths into account.

There is a small problem that may rise. In order for the attack to work, (P 0
i1 , P

0
i2) coun-

terparts, i.e., R0
j1

and R0
j2

has to be in the same chain chainRj (for the indexing phase done
in Step 2(b)). This condition cannot be assured. However, assuming that the cycle structure
of the chains ChainR1 , ChainR2 , . . . behaves as if 8-round IDEA is a random permutation,
it is expected that there is a chain ChainR whose size is larger than 263 with overwhelming
probability [25]. If this is the case, we can change the attack algorithm such that only pairs
of plaintexts (P 0

i1
, P 0

i2
) whose counterparts are in that chain, are considered. This increases the

number of pairs that are considered from 236 to 238 at most, but as at least 3/4 of the new
pairs are not analyzed, this does not increase the time complexity of the attack.

Actually, the time complexity of the attack is expected to drop by a factor of about 2. This is
caused by the fact that the indexing is now performed in some ChainS (the one corresponding
to ChainR) whose size is smaller than 264. Also, there are less candidates for Q75

l that need to
be considered.

We note that we can use even shorter chains, as long as there are sufficiently many candidate
pairs between the chains ChainPi and ChainRj . hence, the attacker starts to generate ChainPi

7 By generating the indices using a little different order, it is possible to use eight 64-bit logical
operations for the computation of valueQ or valueS. Thus, the term “operation” refers here to about
eighteen 64-bit logical operations and seven memory accesses.
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until he obtains the three longest chains. Then, the attacker has to find a ChainQ with any
of these lengths (which can be easily done, as the probability of picking a plaintext at random
from the longer chains is significantly higher). The same is done for ChainRj and ChainS ,
where we stop once we have sufficiently long chains (and thus, enough candidate pairs for the
analysis).

Thus, in this case our attack requires about 299 8-round IDEA encryptions. The data com-
plexity can be slightly reduced as well. For generating ChainPi and ChainRj we do not need to
cover all the small chains. Hence, it is expected that generating these chains requires roughly
264−252 adaptive chosen plaintexts and ciphertexts encrypted under 64 keys each. For ChainQi

and ChainSj we need only to find one of the longer chains, and thus it is expected that 263.4

adaptively chosen plaintexts and ciphertexts (encrypted under 64 keys each) are required. Thus,
the data complexity of the attack is 2·270+2·269.4 = 271.7 related-key adaptive chosen plaintexts
and ciphertexts.

We note that this attack requires more data than the entire codebook for a given key.
However, for any given key of the 256 involved keys, we do not require the entire code book.

4.5 Changes for 4r-Round IDEA with r �= 2

As mentioned earlier, it is possible to apply our attack to 4r-IDEA when the number of rounds is
much larger than 8. The changes in the attack algorithm are only in the data generation phase.
While for 8-round IDEA, the chains are constructed as ChainP = P 0

0 , P 22
0 , . . ., for 4r-round

IDEA the chains are of the form ChainP = P 0
0 , P 75·r mod 128

0 , P 75·r·2 mod 128
0 , P 75·r·3 mod 128

0 , . . ..
When gcd(r, 128) = 2, the obtained attack has the same data complexity as well as the

same number of involved keys (64 for each of the chains). Besides the data generation phase,
the attack is the same.

For the cases when gcd(r, 128) = 1 the chains ChainP and ChainQ are actually the same
chain (and ChainR and ChainS as well). This follows the fact that for such values of r, KP

is rotated each time to the left by a number of bits which is eventually equal to 75 (i.e., there
exists g s.t. 75 · r · g ≡ 75 mod 128). Again, this has no affect on any other steps of the attack
or on its date complexity.

When gcd(r, 128) > 2, the all the chains are shorter, as the number of keys needed for closing
the cycle of the key schedule algorithm is shorter than 64. In that case, the data complexity of
the attack drops by a factor of gcd(r, 128)/2, as well as the number of keys. For example, for
r = 128, the data complexity of the attack is only 266 plaintexts, and the number of keys is
reduced to four.

5 Summary and Conclusions

Our new framework combines the various kinds of related-key attacks. We show that by com-
bining them, we create a powerful attack. For example, we present the first attack on 4r-round
IDEA, and in particular, the first published work that can break 8 rounds of IDEA. The
complexities of our new attack on IDEA, along with the best previously known attacks, are
summarized in Table 1.
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A A Description of IDEA

IDEA is a 64-bit, 8.5-round block cipher with 128-bit keys proposed by Lai and Massey in
1991 [37].

Each round of IDEA (besides the last one) consists of two layers. Let the input of round i
be denoted by four 16-bit words (X i

1, X
i
2, X

i
3, X

i
4). The first layer, denoted by KA, affects

each word independently: The first and the fourth words are multiplied by subkey words (mod
216 + 1) where 0 is replaced by 216, and the second and the third words are added with subkey
words (mod 216). We denote the intermediate values after this half-round by (Y i

1 , Y i
2 , Y i

3 , Y i
4 ).

Let Zi
1, Z

i
2, Z

i
3, and Zi

4 be the four subkey words, then

Y i
1 = Zi

1 � X i
1; Y i

2 = Zi
2 � X i

2; Y i
3 = Zi

3 � X i
3; Y i

4 = Zi
4 � X i

4,

where � denotes multiplication modulo 216 + 1 with 0 replaced by 216, and where � denotes
addition modulo 216.
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Fig. 3. One Round of IDEA

The second layer, denoted by MA, accepts two 16-bit words pi and qi computed as (pi, qi) =
(Y i

1 ⊕ Y i
3 , Y i

2 ⊕ Y i
4 ). We denote the two output words of the MA transformation by (ui, ti).

Denoting the subkey words that enter the MA function of round i by Zi
5 and Zi

6,

ti = (qi � (pi � Zi
5)) � Zi

6; ui = (pi � Zi
5) � ti

The output of the i-th round is (Y i
1 ⊕ ti, Y i

3 ⊕ ti, Y i
2 ⊕ui, Y i

4 ⊕ui). In the last round (round 9)
the MA layer is removed. Thus, the ciphertext is (Y 9

1 ||Y 9
2 ||Y 9

3 ||Y 9
4 ). The structure of a single

round of IDEA is shown in Figure 3.
IDEA’s key schedule expands the 128-bit key into 6 · 8 + 4 = 52 subkeys of 16 bits each

using a very simple algorithm. The key is first used as the first eight subkeys. Then, the key is
rotated by 25 bits to the left, and the outcome is used as the next eight subkeys. The rotation
by 25 bits to the left is repeatedly used as many times as needed. All the subkeys for 8.5-round
IDEA are listed in Table 2.

B A 4-Round Related-Key Truncated Differential of IDEA

Our attack exploits a 4-round related-key truncated differential. This related-key differential
has probability 2−17 when a 16-bit condition on the plaintext is imposed, as we describe later.

The differential holds for rounds 1–4 of IDEA, and thus can be used as a building block in
the unified related-key attack. The key difference is in bits 25 and 48 (i.e., the two related keys
K1 and K2 satisfy K1 ⊕ K2 = ΔK = e25,48).

The input difference of the differential is ΔIN = (0, 8040x, 0, 0), and the fourth input words
of both plaintexts are required to be 1. Thus, after the first key addition layer, the difference
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Round Zi
1 Zi

2 Zi
3 Zi

4 Zi
5 Zi

6

i = 1 0–15 16–31 32–47 48–63 64–79 80–95
i = 2 96–111 112–127 25–40 41–56 57–72 73–88
i = 3 89–104 105–120 121–8 9–24 50–65 66–81
i = 4 82–97 98–113 114–1 2–17 18–33 34–49
i = 5 75–90 91–106 107–122 123–10 11–26 27–42
i = 6 43–58 59–74 100–115 116–3 4–19 20–35
i = 7 36–51 52–67 68–83 84–99 125–12 13–28
i = 8 29–44 45–60 61–76 77–92 93–108 109–124
i = 9 22–37 38–53 54–69 70–85

Table 2. The Key Schedule Algorithm of IDEA

becomes (0, 8000x, 0, 8000x) with probability 1/2. We note that the difference in the most
significant bit of the fourth word is caused by the key difference and the fact that the fourth
words of the plaintexts have the value of 1.

The input difference to the first MA layer is (0, 0), and thus, the output difference of the
first round is (0, 0, 8000x, 8000x). In the second KA layer, the difference in the third word is
cancelled by the key difference with probability 1. Under the assumption that the multiplication
operation (under the two related subkeys) has a close to random behavior, the difference in the
fourth word is cancelled as well with probability 2−16. Hence, with probability 2−17 there is a
zero difference after the second KA layer.

The zero difference state remains until the MA layer of the fourth round, where the key
difference affects the two subkeys. Thus, the output difference of the related-key differential is
ΔOUT = (a, a, b, b) for some unknown a and b.

Note that if the differential is satisfied, then the difference before the MA layer of the
fourth round is a zero difference. This property is used in the key deduction phase of the attack
presented in Section 4.

C Another Key Recovery Attack on 4r-Round IDEA

In this section we propose a different attack algorithm on 4r-round IDEA. The attack is different
than the one in Section 4.2 in the way the chains are used to detect the related-key plaintext
pairs. As before, we present the attack on 8-round IDEA, but it can be easily transformed to
other 4r-round variants of IDEA.

C.1 Attack Algorithm

1. Data Generation:
(a) Pick a plaintext P 0

0 randomly, and ask for its encryption under the unknown key K and
for the encryption of the plaintext R0

0 = P 0
0 ⊕ ΔIN under K ′ = K ⊕ ΔK. Denote the

corresponding ciphertexts by P 22
0 and R22

0 , respectively. Then ask for the encryption of
P 22

0 under K � 22 and of R22
0 under K ′ � 22, and denote the corresponding ciphertexts

by P 44
0 and R44

0 , respectively. Continue the process until the keys are again K and K ′,
and denote the plaintexts by P 0

1 and R0
1, respectively. Repeat the process until 220 pairs

(P 0
i , R0

j) such that P 0
i ⊕ R0

j = ΔIN with the fourth word of P 0
i and R0

j equal to 1 are
encountered. Store each such set of indices (i, j) in a table TableP,R. In case the chains
end before enough such pairs are encountered, another P 0

0 and R0
0 are chosen.

(b) Repeat Steps 1.2 and 1.4 of the attack from Section 4.2 to obtain ChainQ and ChainS .
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2. Generating Related-Key Plaintext Pairs: Choose a pool of 232 candidate related-
key plaintext counterparts to R0

0 denoted by {S75
m }232−1

m=0 , such that ∀m, m′ the difference
S75

m ⊕ S75
m′ is in ΔOUT . Note that the entire space of plaintexts is divided to 232 disjoint

pools of this form. For each pool perform the following:
(a) For each (i, j) ∈ TableP,R, and for all m, compute the encryption of S75

m j positions
further in the chain that starts from it, denoted by S75

m,j. Store in a table the values of
S75

m,j , along with S75
m .

(b) Compute the set of 232 possible Q75
l such that S75

m ⊕ Q75
l ∈ ΔOUT . (We note that the

pool {Q75
l }232−1

l=0 is actually equal to the pool {S75
m }232−1

m=0 , since ΔOUT is closed under
the XOR operation).

(c) For every (i, j) ∈ TableP,R and for all l, compute the i’th places in the chain of the
encryption of Q75

l , denoted by Q75
l,i.

(d) For every (i, j) ∈ TableP,R, and for each pair (Q75
l , S75

m ), check how many times Q75
l,i ⊕

S75
m,j ∈ ΔOUT is satisfied. If this number is greater than 4, apply the key recovery

algorithm using Q75
l as the related-key plaintext counterpart of P 0

0 and S75
m as the

related-key plaintext counterpart of R0
0.

3. If the attack fails for all the 232 pools of {S75
m }, repeat Step 1.1 and Step 2 for another

choice of P 0
0 and R0

0.

The attack identifies the correct related-key plaintext pairs by observing the fact that if Q75
l

and S75
m are the related-key plaintext counterparts of P 0

0 and R0
0, respectively, then out of the

220 checked pairs, it is expected that 8 satisfy ΔOUT . In case that (P 0
0 , Q75

l ) and (R0
0, S

75
m ) are

not related-key plaintext pairs, then only 2−12 of the Q75
l,i ⊕ S75

m,j values are expected to satisfy
ΔOUT .

C.2 Analysis of the Attack

We first note that during the attack, Steps 1 and 2 are expected to be executed 217 times (until
encountering a pair (P 0

0 , R0
0) that satisfies the related-key differential).

Step 1 consists mainly of searching the encryption chains of P 0
0 and R0

0, which can be
efficiently performed using hash tables. Thus, Step 1 requires about 221 memory accesses for
finding the pairs (i, j), and another 220 memory accesses for storing them.

For each pool {S75
m }232−1

m=0 , steps 2(a),2(b), and 2(c) consist of generating sets of 220 values
233 times (232 for S75

m ’s and 232 times for Q75
l ’s) . Assuming that these values are generated as

in the attack of Section 4.2, this stage is mainly composed of memory accesses (253 for each set
of S75

m ’s). Step 2(d) is the more complex one. By correctly indexing the tables, it is possible to
try all the possible pairs of the form (Q75

l,i, S
75
m,j) requiring only 252 memory accesses for a pool.

This is done by storing for each j all the values S75
m,j (or more precisely the 32 bits composed

of the XOR of the first two words and the XOR of the last two words of S75
m,j for all m’s).

Then to query a specific Q75
l,i it is sufficient to compute the XOR of the first and second words,

and the XOR of the third and fourth words, and to check whether this value appears in the
corresponding table. Thus, we conclude that Step 2 requires 254 memory accesses for any pool
of S75

m ’s. As there are 232 such pools, the total time complexity of Step 2 is 286 memory accesses
for each choice of the pair (P 0

0 , R0
0).

Therefore, we conclude that this attack requires 2103 memory accesses, which is roughly the
same as the attack in Section 4.2. The data complexity of the attack is about 271 related-key
chosen plaintexts and ciphertexts for obtaining ChainQ and ChainS . Generating the chains of
all the pairs of (P 0

0 , R0
0) required for the attack is expected to require about 265.5 related-key

adaptive chosen plaintexts and ciphertexts.

20


