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Abstract. KeeLoq is a block cipher used in wireless devices that unlock
the doors and alarms in cars manufactured by Chrysler, Daewoo, Fiat,
GM, Honda, Jaguar, Toyota, Volvo, Volkswagen, etc [8, 9, 33, 34]. KeeLoq
is inexpensive to implement and economical in gate count, yet according
to Microchip [33] it should have “a level of security comparable to DES”.
In this paper we present several distinct attacks on KeeLoq, each of them
is interesting for different reasons. First we show that when about 232

known plaintexts are available, KeeLoq is very weak and for example for
30 % of all keys the full key can be recovered with complexity of 228

KeeLoq encryptions. Then we turn our attention to algebraic attacks
with the major challenge of breaking KeeLoq given potentially a very
small number of known plaintexts.
Our best “direct” algebraic attack can break up to 160 rounds of KeeLoq.
Much better results are achieved in combination with slide attacks. Given
about 216 known plaintexts, we present a slide-algebraic attack that uses
a SAT solver with the complexity equivalent to about 253 KeeLoq en-
cryptions. To the best of our knowledge, this is the first time that a
full-round real-life block cipher is broken using an algebraic attack.
Keywords: block ciphers, unbalanced Feistel ciphers, slide attacks, al-
gebraic cryptanalysis, Gröbner bases, SAT solvers, KeeLoq.

1 Introduction

KeeLoq is a lightweight block cipher designed in the 1980’s and in 1995 it was sold
to Microchip Technology Inc for more than 10 million US dollars as documented
in [8]. Following [35], the specification of KeeLoq that can be found in [34] is “not
secret” but is patented and was released only under license. In 2007, a Microchip
document with the specification of KeeLoq has been made public on a Russian
web site [34].

KeeLoq operates with 32-bit blocks and 64-bit keys. Compared to typical
block ciphers that have a few carefully-designed rounds, this cipher has 528
extremely simple rounds. KeeLoq is not a stream cipher, it does not actually
use any LFSR, and the construction only resembles an NLFSR. Therefore it
is not trivial to see whether KeeLoq will be vulnerable to algebraic attacks.
KeeLoq is a full-fledged “unbalanced Feistel” block cipher of compressing type,
and we anticipate from the Luby-Rackoff theory, that such ciphers are secure
if the number of rounds is sufficient. Is 528 rounds sufficient? As it turns out,
KeeLoq has been designed to be fast, and requires a low number of gates to be
implemented. This is quite interesting as it has been sometimes conjectured that
ciphers which require a small number of gates should be vulnerable to algebraic



cryptanalysis, see [19, 13, 18, 15]. Currently algebraic attacks on block ciphers are
not very powerful, for example for DES [19] and a toy cipher called CTC [17],
only respectively 6 and 10 rounds can be broken, and further progress seems
difficult. According to [33], KeeLoq should have “a level of security comparable
to DES”. In this paper we will see that the simplicity of KeeLoq makes it directly
breakable by simple algebraic attacks for up to 160 rounds out of 528.

The key property that allows further more efficient attacks on KeeLoq is a
sliding property: KeeLoq has a periodic structure with a period of 64 rounds.
This in combination with an algebraic attack will allow us to recover the complete
key for the full 528-round cipher given 216 known plaintexts.

KeeLoq has unusually small block length: 32 bits. Thus, in theory the attacker
can expect to recover and store the whole code-book of 232 known plaintexts.
Then one may wonder whether it is really useful to recover the key, as the code-
book allows one to encrypt and decrypt any message. However, there are many
cases in which it remains interesting for example if a master key can be recovered.
We will see that given the whole code-book KeeLoq is spectacularly weak and
the key will be recovered in time equivalent to about 228 KeeLoq encryptions.

This paper is organised as follows: in Section 2 we describe the cipher and its
usage. In Section 3, we discuss the unusual properties of block ciphers with small
blocks and discuss the practical interest of key recovery attacks in this case. In
Section 4 we do some preliminary analysis of KeeLoq and recall useful results
about random functions. In Section 5 we describe a very fast attack that recovers
the key for full KeeLoq given the knowledge of slightly less than the whole code-
book. In Section 6 we demonstrate several simple algebraic attacks that work
given very small quantity of known/chosen plaintexts and for a reduced number
of rounds of KeeLoq. In Section 7 we study combined slide and algebraic attacks
that work given about 216 known plaintexts for the full 528-round cipher. In
Appendix A we discuss strong keys in KeeLoq. In Appendix B we study the
algebraic immunity of the Boolean function used in KeeLoq.

1.1 Notation
We will use the following notation for functional iteration:

f (n)(x) = f(f(· · · f(︸ ︷︷ ︸
n times

x) · · ·))

2 Cipher Description

The specification of KeeLoq can be found in the Microchip product specification
document [34], which actually specifies KeeLoq decryption, that can be converted
to a description of the encryption, see [8, 9, 4]. Initially there were mistakes in
[8, 9] as opposed to [34, 4] but they are now corrected.

The KeeLoq cipher is a strongly unbalanced Feistel construction in which the
round function has one bit of output, and consequently in one round only one
bit in the “state” of the cipher will be changed. Alternatively it can viewed as a
modified shift register with non-linear feedback, in which the fresh bit computed
by the Boolean function is XORed with one key bit.



The cipher has the total of 528 rounds, and it makes sense to view that as
528 = 512+16 = 64×8+16. The encryption procedure is periodic with a period
of 64 and it has been “cut” at 528 rounds, because 528 is not a multiple of 64, in
order to prevent obvious slide attacks (but more advanced slide attacks remain
possible as will become clear later). Let k63, . . . , k0 be the key. In each round,
it is bitwise rotated to the right, with wrap around. Therefore, during rounds
i, i+ 64, i+ 128, . . ., the key register is the same. If one imagines the 64 rounds
as some fk(x), then KeeLoq is

Ek(x) = gk(f (8)
k (x))

with g(x) being a 16-round final step, and Ek(x) being all 528 rounds. The last
“surplus” 16 rounds of the cipher use the first 16 bits of the key (by which we
mean k15, . . . , k0) and gk is a functional“prefix” of fk (which is also repeated at
the end of the whole encryption process). In addition to the simplicity of the
key schedule, each round of the cipher uses only one bit of the key. From this
we see that each bit of the key is used exactly 8 times, except the first 16 bits,
k15, . . . , k0, which are used 9 times.

At the heart of the cipher is the non-linear function with algebraic normal
form (ANF) given by:

NLF (a, b, c, d, e) = d⊕ e⊕ ac⊕ ae⊕ bc⊕ be⊕ cd⊕ de⊕ ade⊕ ace⊕ abd⊕ abc
Alternatively, the specification documents available [8], say that it is “the

non-linear function 3A5C742E” which means that NLF (a, b, c, d, e) is equal to
the ith bit of that hexadecimal number, where i = 16a + 8b + 4c + 2d + e. For
example 0, 0, 0, 0, 1 gives i = 1 and the second least significant (second from the
right) bit of of “3A5C742E” written in binary.

The main shift register has 32 bits, (unlike the key shift register with 64
bits), and let Li denote the leftmost or least-significant bit at the end of round
i, while denoting the initial conditions as round zero. At the end of round 528,
the least significant bit is thus L528, and then let L529, L530, . . . , L559 denote the
31 remaining bits of the shift register, with L559 being the most significant. The
following equation gives the shift-register’s feedback:

Li+32 = ki mod 64 ⊕ Li ⊕ Li+16 ⊕NLF (Li+31, Li+26, Li+20, Li+9, Li+1)

where k63, k62, . . . , k1, k0 is the original key.

2.1 Cipher Usage

It appears that the mode in which the cipher is used depends on the car man-
ufacturer. One possible method is a challenge-response authentication with a
fixed key and a random challenge. Another popular method is to set the plain-
text to 0, and increment the key at both sides. Another important mode is a so
called ’hopping’ or ’rolling’ method described in [4, 33]. In this case 16 bits of
the plaintext are permanently fixed on both sides, and the attacker cannot hope
get more than 216 known plaintexts. More information can be found in [4–6].

In this paper we study the security of the KeeLoq cipher against key recovery
attacks given a certain number of known or chosen plaintexts.



1. Initialize with the plaintext: L31, . . . , L0 = P31, . . . , P0

2. For i = 0, . . . , 528− 1 do
Li+32 = ki mod 64 ⊕ Li ⊕ Li+16⊕NLF (Li+31, Li+26, Li+20, Li+9, Li+1)

3. The ciphertext is C31, . . . , C0 = L559, . . . , L528.

Fig. 1. KeeLoq Encryption



3 Block Ciphers with Small Blocks and Large Key Size

Most known block ciphers operate on binary strings and consist of a function
E : {0, 1}`K×{0, 1}`P → {0, 1}`P . The stereotype is that `P = `K = `P , however
in practical/industrial applications, this is almost never the case, for example:

– IDEA `P = 64, `K = 128.
– DES `P = 64, `K = 56.
– Two-key triple DES `P = 64, `K = 112.
– AES `P = 128, `K ∈ {128, 192, 256}.
– KeeLoq `P = 32, `K = 64.

Another stereotype is that, when `P << `K , for example in triple-DES and
AES-256, the key recovery is of purely academic interest, and an attack on AES-
256 that runs in time of say 2240 has no practical consequences. However, for
cipher such as KeeLoq, the situation is different. The block size is small enough so
that the whole code-book can be stored on a PC, and several key recovery attacks
are feasible in practice. In what follows we will explain that, when `P << `K ,
and even if more or less the whole code-book is known, recovering the key can
have numerous important and practical consequences.

3.1 On Key Recovery Attacks and Ciphers with Small Blocks
The code-book of a cipher E under a key k is defined as the set of all 2`P pairs
(P,C) such that E(k, P ) = C. If 2`P < 2`K , a natural question is why, would
one want to recover the key if it is possible to have the entire code-book? There
are several answers to this question depending on the circumstances:

1. If the adversary is a powerful insider, and has an oracle chosen-plaintext
access to the cipher, or the whole code-book table stored in memory, the
question will be of purely academic interest. Nevertheless, in real life appli-
cations, and even for such powerful attackers, the actual key recovery can
be very valuable. When there is a master key in the system – it is a com-
mon practice in the industry – a successive key recovery would allow to
compromise the security of the system on a much wider scale.

2. In most practical scenarios, we rather have a known-plaintext attack, and
not all plaintexts will actually arise (e.g. due to padding, specific probabil-
ity distribution, some values only can appear in the future, etc.). Here the
adversary can recover a number of plaintext-ciphertext pairs that can be for
example 60 % of all possible pairs, but typically he cannot hope to recover
all pairs. Importantly, the value of pairs he doesn’t have may be very large,
while the value of pairs he already has can be negligible. For example, a block
cipher with small block-size can be used to anonymize records in medical and
financial databases. Then, key recovery would allow the adversary to have
all possible pairs, some of which may potentially be valuable. A security
model for ciphers with small blocks was recently studied by Granboulan and
Pornin in Section 5 of [28]: in this model, even if the adversary has the whole
code-book except images of two points, his goal is to recover the images of
the missing two points, which can be still very hard.



3. In many real-life situations, the code-book can be noisy, and contain errors.
This can be because of transmission errors, human errors such as selecting
the wrong encryption key, inadvertent interference with another system or
another (active) attacker, or a defensive voluntary injection of dummy mes-
sages to frustrate the attackers. Then again, the key recovery may be the
only way to know which messages were genuine.

In an extreme scenario, the whole code-book is known, but not with certainty,
and a confirmation is sought. If the reader doubts the practicality of this scenario,
consider the following. In 1942, the United States decrypted many messages
encrypted with the famous Japanese cipher known as “Purple”, forecasting an
attack at “AF.” Making sure that “AF” was in fact the Midway Island (which
was anticipated but there was no certitude) had a pivotal impact on winning the
World War II. For more details we refer to David Kahn [31].

4 Preliminary Analysis and Useful Combinatorial Facts

4.1 Preliminary Analysis of KeeLoq

Fact 4.1. Given (x, y) with y = hk(x), where hk represents up to 32 rounds of
KeeLoq, one can find the part of the key used in hk in as much time as it takes
to compute hk.

Justification: This is because for up to 32 rounds, all state bits between round i
and round i− 1 are directly known. More precisely, after the round i, 32− i bits
are known from the plaintext, and i bits are known from the ciphertext, for all
i = 1, 2, . . . , 32. Then the key bits are obtained directly: we know all the inputs of
each NLF, and we know the output of it XORed with the corresponding key bit.
We simply have ki−32 = Li⊕Li−32⊕Li−16⊕NLF (Li−1, Li−6, Li−12, Li−23, Li−30).
This also shows that there will be exactly one possible key.

Remark: For more rounds it is much less simple, yet as shown in Section 6,
direct algebraic attacks allow to efficiently recover the key for up to 160 rounds.

Fact 4.2. Given (x, y), one can quickly test whether it is possible that y = gk(x)
for 16 rounds. The probability that a random (x, y) will pass this test is 1/216.
Justification: After 16 rounds of KeeLoq, only 16 bits of x are changed, and 16
bits of x are just shifted. If data is properly aligned this requires a 16-bit equality
test that should take only 1-2 CPU clocks.

Fact 4.3. Given (x, y) with y = hk(x), where hk represents 48 rounds of KeeLoq,
one can find all 216 possible keys for hk in as much time as 216 times the time
to compute hk.

Justification: Try exhaustively all possibilities for the first 16 key bits and apply
Fact 4.1.

Fact 4.4. For full KeeLoq, given a pair (p, c) with c = Ek(p), it is possible to
very quickly test whether p is a possible fixed point of f8

k . All fixed points will
be accepted; all but 1/216 of the non-fixed points will be rejected.
Justification: If p is a fixed point of f8, then c = gk(p). We simply use Fact 4.2
to test whether it is possible that c = gk(p).



4.2 Useful facts About Fixed Points and Random Permutations

Proposition 4.1. Given a random function from n-bits to n-bits, the probabil-
ity that a given point y has i pre-images is 1

ei! , when n→∞.
Justification: Let y be fixed, the probability that f(x) = y is 1/N where N = 2n

is the size of the space. We get
(
N
i

)
(1− 1/N)N−i1/N i ≈ 1

ei! when N →∞. This
is a Poisson distribution with the average number of pre-images being λ = 1.

This fact can be applied to derive statistics on the expected number of fixed
points of permutations tat we encounter in cryptanalysis. In particular let fk(x)
be the first 64 rounds of KeeLoq. Assuming that fk(x)⊕ x is a pseudo-random
function, we look at the number of pre-images of 0 with this function. This gives
immediately:
Proposition 4.2. The first 64 rounds fk of KeeLoq have 1 or more fixed points
with probability 1− 1/e ≈ 0.63.
Proposition 4.3. Assuming fk behaves as a random permutation, the expected
number of fixed points of f8

k is exactly 4.
Justification: A random permutation π has 1 fixed point on average. Then in
addition to possible “natural” fixed points (1 on average) the π8 will also “in-
herit” all fixed points of π2, π4 and π8, that for large permutations are with very
high probability all distinct fixed points. A rigourous proof of this fact can be
obtained from the authors, see [22].
Proposition 4.4. The probability that i) first 64 rounds fk of KeeLoq have 1
or more fixed points, and simultaneously ii) the 512 rounds f8

k have j = 4 or
more fixed points, is e−1 − 13

6 e
−15/8 which is about 0.29985.

Justification: Roughly, from Proposition 4.3, we expect about half of 0.63. In
[22] we show how one compute such probabilities exactly with the methods of
modern analytic combinatorics, see [25, 38, 22].

5 Attacks on KeeLoq that Use the Whole Dictionary

We will now present an attack that is extremely fast and shows that KeeLoq is
very weak when (about) the whole code-book is known. In this paper we present
two relatively simple versions of this attack. Additional improved versions are
described in [22].

5.1 Setup and Assumptions
We assume that one can iterate through all possible 232 plaintexts. This can
either be obtained from a remote encryption oracle, or simply harnessing the
circuitry without being able to read the key in order to clone the device. While
this may sound like a practical attack scenario, it is hard to imagine a hacker pa-
tient enough to get 232 known plaintext-ciphertext pairs from the device knowing
that brute force is actually feasible. For simplicity we will assume that all the
plaintext-ciphertext pairs are stored in a table. This requires 16 Gigabytes of
RAM which is now available on a high-end PC. We also assume that the time
to get one pair is about tr = 16 CPU clocks. This is a realistic and conservative
estimation.

In our Slide-Determine Attack we make the following assumption.



Fixed Point Assumption. We assume that there is at least one fixed point
for fk(x) where fk(x) represents the first 64 rounds of the cipher. As shown in
Section 4.2, this happens with probability 0.63. We recall that if x is a fixed
point of fk(·) than x is a fixed point of f (8)

k (·), which are the first 512 rounds of
KeeLoq. In fact several additional fixed points for f8

k are expected to exist, as
on average f8

k has 4 fixed points (cf. Proposition 4.3).
The complexity of nearly all known attacks on KeeLoq greatly depends on

the number of fixed points for fk and f8
k . In our attack that will follow, the more

fixed points exist for f8
k , the fastest can be the overall attack. The version A

of our attack works for 63 % of all keys (cf. Proposition 4.2). The version B is
faster but works for a smaller fraction of 30 % of all keys (this figure comes from
Proposition 4.4). Other versions of this attack can be designed and are described
in [22]. In contrast, for 37 % of keys for which fk has no fixed point whatsoever,
all versions of our Slide-Determine attack fail completely. In Appendix A we
discuss this situation: there is a large class of “strong keys” for which the cipher
is more secure.

5.2 Our Slide-Determine Attack
This attack requires 232 plaintext-ciphertext pairs (p, c). We assume that (at
least) one p is a fixed point of fk. Then, slightly more than 4 of them on average
are fixed points for f8

k (cf. Proposition 4.3). This attack occurs in three stages.

Stage 1 - Batch Guessing Fixed Points. Following our assumption there is
(at least) one p is a fixed point for f8

k . For each pair (p, c), we use Fact 4.4 to test
whether it is possible that f8

k (p) = p; if not, discard that pair. The complexity
so far is about tr · 232 CPU clocks (mostly spent accessing the memory). Only
about 216 + 4 pairs will survive, and all these where p is a fixed point to f8

k .
Then following Fact 4.1 we can at the same time compute 16 bits of the key

with time of about 4 ·16 CPU clocks (cf. Fact 4.1 and 6.1). To summarize, given
the whole code-book and in time of about tr ·232 CPU clocks by assuming that p
is a fixed point to f8

k , we produce a list of about τA = 216 triples p, c, (k15, . . . , k0).
Assuming that tr = 16 CPU clocks, the complexity of Stage 1 is about 236 CPU
clocks which is about 225 KeeLoq encryptions.

Stage 1B - Filtering (Optional). This stage is optional, it is omitted in
version A of our attack, and necessary in version B. We wish to be able to filter
out a certain fixed proportion of these 216 cases, so that the complexity of Stage
1 will dominate attack. Let j8 be the number of fixed points for f8

k . If j8 > 1,
our attack can be improved. If we omit Stage 1B, or if j8 = 1 (which is quite
infrequent), then the Stage 3 will dominate the attack, which as we will see
later will make it noticeably slower. To bridge this gap we wish to exclude a
proportion of all the 216 pairs. The filtering is done as follows.

We store the triples p, c, (k15, . . . , k0) in a data structure keyed by (k15, . . . , k0).
(For instance, we can have an array of size 216, where A[i] points to a linked
list containing all triples such that (k15, . . . , k0) = i.) It allows us to count, for
each value (k15, . . . , k0), the number f of triples associated with that partial-key



value. In version B, we assume that j8 ≥ 4 which occurs for 30 % of all keys (cf.
Proposition 4.4). We will then discard all triples such that (k15, . . . , k0) does not
repeat 4 or more times in our list.

The worst-case complexity of Step 2 and Step 3 of our attack will be pro-
portional to the size τ of our list (if all cases are tried). The expected size of
the filtered list can be computed as follows: we assume that the keys that ap-
pear in this table are the 216 outputs of a random function on 16 bits, that
takes as input any of the 216 pairs (p, c). Then following Proposition 4.1, the
proportion of 1

ei! of keys will appear i times. The total number of keys that will
appear 4 or more times is therefore equal to 216 ·∑i≥4

1
ei! . However, we have

to check all the triples which is more than all the keys. In our list of triples,
each of these keys will appear i times (in some triple). In our attack, it is not
merely sufficient to find a triple in our list having the correct 16 bits of the key:
this is because our list contains several fixed points for fk, but only about one
fixed point for f8

k which is necessary to complete further stages of our attack.
Accordingly, the expected number of elements to be checked (the size of our list)
is τB = 216 ·∑i≥4 i · 1

ei! ≈ 212.4. This is the worst-case estimate for the attack
version B (which works for 30 % of all keys). On average we only need about
half of this number.

Stage 2 - Batch Solving. If we assume that p is a fixed point of fk, at least
one triple in our list is valid. Moreover we expect than less than 2 are valid on
average, as we expect on average between 1 and 2 fixed points for fk (we assumed
there is at least one). For each surviving triple, assume that p is a fixed point,
so that c = Ek(p) = gk(f (8)

k (p)) = gk(p). Note that if fk(p) = p, then p = hk(c),
where hk represents the 48 rounds of KeeLoq using the last 48 key bits. Then an
algebraic attack can be applied to suggest possible keys for this part. If we guess
additional 16 bits of the key, such an attack with a SAT solver takes less than
0.1 s. We have found a simpler and faster method to get the same result. We use
Fact 4.3 to recover 216 possibilities for the last 48 key bits from the assumption
that p = h(c). Combined with the 16 bits pre-computed above for each triple,
we get a list of at most 232 possible full keys on 64 bits. We expect to compute
only at most 216 · τ of these full keys on 64 bits, before the attack succeeds. This
takes time of at most 216 · τ computations of hk(·) (cf. Fact 4.3). And we have
τA = 216 and τB = 212.4 in versions A and B of our attack respectively. Overall
Step 2 requires 216 · τ · 4 · 48 CPU clocks, which is approximatively 228.6 and
225.0 KeeLoq encryptions for respective versions A and B.

Early Abort: About half of this number is needed on average, with an early
abort strategy as follows: for each of the τ triples we will execute Step 2 and
Step 3. If Step 3 recovers and confirms the full key of KeeLoq, we abort the
attack.

Stage 3 - Verification. Finally, we test each of these 216 · τ complete keys
(which is less or equal to 232) on one other plaintext-ciphertext pair p′, c′. Most
incorrect key guesses will be discarded, and only 1 or 2 keys will survive, one of
them being correct. With additional few pairs we get the right key with certainty.



In version A, this stage requires up to 216 · τA = 232 full 528-round KeeLoq
encryptions. which dominates the complexity of the whole attack. In version B,
we need at most 216 · τB full KeeLoq encryptions.

Complexity Analysis.

The total complexity of the full attack is as follows:
Version A: The worst-case complexities of stages 1, 2 and 3 are 225, 228.6 and

232.0 KeeLoq encryptions respectively. The total is is 232.1 KeeLoq encryptions.
On average, with early abort of Stages 2 and 3, after trying on average half

of τA triples, as described above (Step 1 has to be executed in entirety), we get
an average complexity of about 231.1 KeeLoq encryptions.

Version B: In this version, the worst-case complexities of stages 1, 2 and 3
are 225, 225 and 228.4 KeeLoq encryptions. The total is 228.7 KeeLoq encryptions.

On average, we get about 227.7 KeeLoq encryptions.

Summary of Our Slide-Determine Attack. To summarize, for 30 % of all
keys our Slide-Determine Attack version B allows to recover the key in average
time equivalent to about 228 KeeLoq encryptions. Overall, for all 63 % of keys
our Slide-Determine Attack version A requires about 231 KeeLoq encryptions on
average. No attack of comparable efficiency is known for the remaining 37 % of
keys.

6 Direct Algebraic Attacks on KeeLoq

Our goal is to recover the key of the cipher by solving a system of multivariate
equations given a small quantity of known, chosen or random plaintexts, as in
[13]. Very few such attacks are really efficient on block ciphers. For example
DES can be broken for up to 6 rounds by such attacks, see [19]. For KeeLoq, due
to its simplicity, up to 160 rounds can be directly attacked, without (not yet)
exploiting the sliding properties of the cipher. This is in particular interesting
for the 37 % of keys for which all our sliding attacks fail.

6.1 How to Write the Equations
We write equations in a straightforward way: namely by following directly the
description of Fig 1. One new variable represents the output of the NLF in the
current round. In addition, in order to decrease the degree, we add two additional
variables per round, to represent the monomials α = ab and β = ae, and add
equations of the form αi = aibi and βi = aiei.

This means we have:
y = NLF (a, b, c, d, e) = d⊕ e⊕ ac⊕ β ⊕ bc⊕ be⊕ cd⊕ de⊕ βd⊕ βc⊕ αd⊕ αc

which permits us to write
Li+32 = k

i mod 64
⊕ Li ⊕ Li+16 ⊕ Li+9 ⊕ Li+1

⊕Li+31Li+20 ⊕ βi ⊕ Li+26Li+20 ⊕ Li+26Li+1 ⊕ Li+20Li+9

⊕Li+9Li+1 ⊕ βiLi+9 ⊕ βiLi+20 ⊕ αiLi+9 ⊕ αiLi+20

αi = Li+31Li+26

βi = Li+31Li+1

These three equations need merely be repeated for each round.



The values of the plaintext, the ciphertext, and a certain number of key bits
that we may fix (i.e. guess, cf. Section 6.2) during the attack are written as
separate equations (for example we write that L31 = 1 for the leftmost bit of
the plaintext). Thus, given r rounds of the cipher, and for each known plaintext,
assuming that F bits of the key are known, we will get a system of 3r+32+32+F
multivariate quadratic equations with 3r + 64 + 32 variables: these are all the
L0, . . . , Lr+31, the key variables ki, the αi and the βi. Out of these the values of
32 + 32 +F variables are already known. It should be noted that these equation
and monomial counts are exact, and that this system is overdefined. The total
number of distinct monomials that appear in these equations is roughly 12r.

The equations are written for one or several known plaintexts. This will be
our known-plaintext attack. In another version, we consider that the cipher is
used in the counter mode, i.e. the set of plaintexts forms a set of consecutive
integers encoded on 32 bits. This will be called a counter mode attack. Several
complete and working examples of equations can be downloaded from [10].

6.2 Direct Algebraic Attacks on KeeLoq vs. Brute Force
The equations of KeeLoq are of very low degree (i.e. 2), and very sparse. One
can try to solve with an off-the-shelf computer algebra system such as Magma’s
implementation of F4 algorithm [24] or Singular’s slimgb() algorithm [39]. We
have also tried a much simpler method called ElimLin and described in [19]. An-
other family of techniques are SAT solvers. Any system of multivariate equations
is amenable for transformation into a CNF-SAT problem, using the methods of
[20].

Fact 6.1. An optimised assembly language implementation of r rounds of KeeLoq
is expected to take only about 4r CPU clocks.

Justification: See footnote 4 in [4].
Thus, the complexity of an attack on r rounds of KeeLoq with k bits of the

key should be compared to 4r × 2k−1 which is the expected complexity of the
brute force key search. For example, for full KeeLoq, the reference complexity
for the exhaustive key search is about 275 CPU clocks. Assuming that the CPU
runs at 2.5 GHz, one can execute about 243 CPU clocks per hour. Consider the
following example. Suppose we guess 32 key bits for example k1 = 0, k2 = 1, . . ..
Suppose that the remaining key bits are found on a PC in less than an hour, or
< 243 CPU clocks. In reality, the attacker is not given 32 bits of the key. Instead
one can guess them and on average 231 such guesses must be made. With early
abort of unsuccessful tries after for example 1.5 hours, the expected running
time is < 243231+1 or < 275, which is faster than brute force.

Note: In the real life hackers recover the KeeLoq key by brute force with
FPGAs which takes about two weeks, see [8].

6.3 Frontal Assault – Elimination and Gröbner Bases Attacks
Example 1. For example, we consider 64 rounds of KeeLoq and 2 known plain-
texts, and we run ElimLin as described in [19]. In 5 seconds, the program man-
ages to eliminate all but 130 variables out of the initial 512 variables. Moreover,



in the linear span of the equations after ElimLin, the program is able to find
one equation of degree 2, that involves only the 64 key variables and in which
all the internal variables of the cipher are eliminated. This is sufficient to show
that 64 rounds are very easy to break by Gröbner bases. For example, we may
proceed as follows: for each new pair of known plaintexts, we get a new equation
of this type. Given a sufficient number of known plaintexts (a small multiple of
64 will be sufficient), we will get a very overdefined system of equations with
64 variables. Such systems are known to be easily solvable by the XL algorithm
and Gröbner bases, see [12, 11, 1].

Example 2. Here also, we consider 64 rounds of KeeLoq and 4 known plaintexts,
and we run ElimLin as described in [19]. We fix 10 key bits to their true values.
Then the remaining 54 key bits are recovered by ElimLin alone in 8 seconds.
With Singular slimgb() function [39] the same computation takes 1 minute.

Example 3. With 64 rounds, 2 plaintexts that differ only in 1 bit, (it is no
longer a known plaintext attack, but rather a chosen plaintext attack), and with
14 key bits fixed, the key is computed by ElimLin in 7 seconds and by Singular
in 10 seconds.

Example 4. With 128 rounds and 128 plaintexts in the counter mode (the
plaintexts are consecutive integers on 32-bits), and 30 bits fixed, the remaining
34 bits are recovered by ElimLin in 3 hours. This is slightly faster than brute
force.

6.4 Cryptanalysis of KeeLoq with SAT Solvers
From [19], one may expect that better results will be obtained with SAT solvers.
Given some number of pairs of plaintext and ciphertexts, over the whole 528
rounds, we rewrite the equations as a SAT problem and try to solve them. We
write equations as polynomials (cf. previous section) and use the simplest version
of the ANF to CNF conversion method described in [20].

Example 5. For full 528 rounds of KeeLoq, these attacks remain much slower
than exhaustive search. For example with 2 plaintexts in counter mode (two
consecutive integers on 32-bits) and 48 bits fixed, the remaining 16 key bits
are recovered in 30 seconds with our conversion to CNF and MiniSat 2.0., done
as described in [19, 20]. This is much slower than brute force. However, with a
reduced number of rounds, the results are more interesting.

Example 6. For 64 rounds of KeeLoq and 2 known plaintexts, the key is re-
covered by MiniSat 2.0. in 0.3 s.

Example 7. For 96 rounds of KeeLoq, 4 known plaintexts, and when 20 key
bits are guessed, the key is recovered by MiniSat 2.0. in 0.4 s.

Example 8. With 128 rounds and 2 known plaintexts, and 30 bits guessed, the
remaining 34 bits are recovered in 150 s by MiniSat 2.0. This is about 80x faster
than brute force.



Example 9. With 160 rounds, 2 plaintexts in counter mode, and 30 bits guessed,
the remaining 34 bits are recovered in 233 s by MiniSat 2.0. This is clearly faster
than brute force.

We note that the maximum number of rounds that we can break faster than
by exhaustive search by our best algebraic attack with SAT solvers is 160 rounds.
This attack does not exploit the periodicity of the cipher and uses an extremely
low number of know plaintext-ciphertext pairs. In comparison up to 32 rounds
can be broken directly “by hand” (cf. Fact 4.1). We also note that when the
number of rounds is reduced to 64, the full key can be obtained almost instantly.
This fact gave inspiration to design Slide-Algebraic attacks.

7 Combining Slide and Algebraic Attacks on KeeLoq

If the number of rounds were 512, and not 528, then it would be easy to analyse
KeeLoq as an 8-fold iteration of 64 rounds. The last 16 rounds are a “barrier”,
which we can remove by guessing the 16 bits of the key used in those 16 rounds.
These are the first 16 key bits, or k0, . . . , k15, and the guess is correct with
probability 2−16. This is what we will do in our Slide-Determine Attack and
our Slide-Algebraic Attack 1. Alternatively (as we will see in our Slide-Algebraic
Attack 2), we may assume/guess some particular property of the 512 rounds of
the cipher and try to recover the 16 (or more) bits that confirm this property.

Classical sliding attacks [3, 26, 30] exploit pairs of plaintext that have the
following property:

Definition 7.1. Given a block cipher with periodic structure of the form Ek(x) =
gk(f (m)

k (x)), m > 1, we call a “slid pair” any pair of plaintexts (Pi, Pj) such that
fk(Pi) = Pj .

7.1 Slide-Algebraic Attack 1

A simple sliding attack on KeeLoq would proceed as follows.

1. We guess the 16 key bits of gk which gives us “oracle access” to 512 rounds
of KeeLoq that we denote by O = f

(8)
k .

2. We consider 216 known plaintexts (Pi, Ci).
3. By birthday paradox, one pair (Pi, Pj) is a “slid pair” for 64 rounds.
4. From this, one can derive as many known plaintexts for 64 rounds of KeeLoq

as desired. For example, if fk(Pi) = Pj then fk(O(Pi)) = O(Pj). Additional
“slid pairs” are obtained by iterating O twice, three times etc..

5. The whole attack has to be run about 232 times, to find the correct “slid
pair” (Pi, Pj).

In all with guessing the key of gk there are 248 possibilities to check. For
each potential value for the first 16 bits of the key, and for each couple (Pi, Pj)
we compute some 4 plaintext-ciphertext pairs for 64 rounds and then the key is
recovered by MiniSat (cf. above) in 0.4 s which is about 230 CPU clocks. The
total complexity of the attack is about 278 CPU clocks which is more than the
exhaustive search.



7.2 Slide-Algebraic Attack 2
Another, better sliding attack proceeds as follows.

1. We do not guess 16 key bits, they will be determined later.
2. We consider 216 known plaintexts (Pi, Ci).
3. By birthday paradox, one pair (Pi, Pj) is a “slid pair”: fk(Pi) = Pj .
4. Then the pair (Ci, Cj) is a plaintext-ciphertext pair for a “slided” version of

the same cipher: starting at round 16 and finishing before round 80. This is
to say a cipher with absolutely identical equations in every respect except
for the (permuted) subscripts of the ki.

5. From the point of view of multivariate equations and algebraic cryptanalysis,
this situation is not much different than in Example 6 above solved in 0.3
seconds. We have one system of equations with the pair (Pi, Pj) for the first
64 rounds, and the same system of equations with the pair (Ci, Cj) and the
key bits that are rotated by 16 positions.

6. We did write this system of equations and try ElimLin and MiniSat. For
example with 15 first bits of the key fixed, ElimLin solves the system in 8
seconds. Better results are obtained with MiniSat, and without guessing any
key variables, the key is computed in typically 1 about 2 seconds. Thus, with
ElimLin, we can recover the key in about 249 CPU clocks, and with MiniSat,
we can do it in about 232 CPU clocks.

7. There are about 232 pairs (Pi, Pj) to be tried.

The total complexity of the attack, in the version with MiniSat is about
232+32 = 264 CPU clocks which is much faster than exhaustive search that
requires about 275 CPU clocks.

Summary. Our Slide-Algebraic Attack 2 can break KeeLoq within 264 CPU
clocks given 216 known plaintexts. This is about 253 KeeLoq encryptions. The
attack is realistic, practical and has been fully implemented.

8 Conclusions
In this paper we described several key recovery attacks on KeeLoq, a block
cipher with a very small block size and a simple periodic structure. KeeLoq is
widespread in the automobile industry and is used by millions of people every
day. Recently it has been shown that for a more complex cipher such as DES, up
to 6 rounds can be broken by an algebraic attack given only one known plaintext
[19]. In this paper we showed that up to 160 rounds of KeeLoq can be broken
directly using MiniSat 2.0. algorithm with only 2 chosen plaintexts.

In combination with sliding attacks, an algebraic attack one the full 528-
round KeeLoq is possible. Given about 216 known plaintexts, we have proposed
a working slide-algebraic attack equivalent to 253 KeeLoq encryptions. In partic-
ular, in the so called ’hopping’ or ’rolling’ mode described in [4–6, 33], one cannot
1 We have written these equations for 10 different random keys with randomly chosen

plaintexts, and the timings we obtained were: 2.3, 9.1, 1.5, 0.5, 4.4, 0.3, 8.1, 1.8, 0.4, 0.6
seconds. Here the average time is 2.9 s and the median time is 1.65 s.



obtain more than 216 known plaintexts. We are the first to have proposed such
an attack on KeeLoq (all previous attacks required 232 known plaintexts). Our
attack is practical and was implemented with little programming effort.

We also showed that if as many as 232 known plaintexts are available, KeeLoq
is in fact extremely weak. For example, for 30 % of all keys, we can recover the
key of the full cipher with complexity equivalent to 228 KeeLoq encryptions. This
attack can be prevented by a class of “strong keys” we defined that decreases
the effective key space from 64 bits to 62.56 bits.

KeeLoq is a weak and simple cipher, and has several vulnerabilities. It is
interesting to note that attacks that use sliding properties can be quite powerful
because typically (in all our Slide-Determine and Slide-Algebraic Attacks) their
complexity simply does not depend on the number of rounds of the cipher.

Table 1. Comparison of our attacks to other attacks reported on KeeLoq.

Type of attack Data Time Memory Reference

Pure Algebraic/SAT 2 KP 273 small Our Example 5

Brute Force 2 KP 263 small

Slide-Algebraic 216KP 267 small Our Slide-Algebraic Attack 1

Slide-Algebraic 216KP 253 small Our Slide-Algebraic Attack 2

Slide-Meet-in-the-Middle 216KP 246 small Biham, Dunkelman et al[23]

Slide-Meet-in-the-Middle 216CP 245 small Biham, Dunkelman et al[23]

Slide-Correlation 232KP 251 16 Gb Bogdanov[4, 5]

Slide-Cycle-Algebraic 232KP 240 18 Gb Attack 3 in [21]

Slide-Cycle-Correlation 232KP 240 18 Gb Bogdanov [5]

Two versions:

Slide-Determine 232KP 231 16 Gb A: for 63 % of all keys

Slide-Determine 232KP 228 16 Gb B: for 30 % of all keys

Legend: The unit of time complexity here is one KeeLoq encryption.

The results of this paper can be compared to [4–6], other very recent work
on KeeLoq. Recently, another attack with 216 KP and time about 245 KeeLoq
encryptions was proposed by Biham, Dunkelman et al. [23]. Knowing which is
the fastest attack on one specific cipher, and whether one can really break into
cars and how, should be secondary questions in a scientific paper. Instead, in
cryptanalysis we need to study a variety of attacks on a variety of ciphers. Brute
force will be in fact maybe the only attack that will be executed in practice
by hackers. It is precisely by attacking weak ciphers such as KeeLoq in many
different ways that we discover many interesting attacks, and some important
attacks such as algebraic attacks would never be discovered without extensive
experimentation.

Acknowledgments. We thank Sebastiaan Indesteege and Sean O’Neil for valu-
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A Strong Keys in KeeLoq

It is possible to see that the manufacturer or the programmer of a device that
contains KeeLoq can check each potential key for fixed points for fk. If it has
any, that key can be declared “weak” and never used. This means that 63% of
keys will be weak, and changes the effective key space from 64 bits to 62.56 bits,
which is in fact a small loss. This appears to be practical for KeeLoq because
the size of the plaintext-space is only 232 and can be checked. A similar strong-
key solution was in 2002 patented and commercialized by Gemplus corporation
(currently Gemalto) to prevent GSM SIM cards from being cloned, see [29]. This
removes our fastest attack on KeeLoq, Slide-Determine Attack. Further research
is needed to see what is the best attack on KeeLoq in this case, and whether it
is also necessary to remove fixed points for f (2)

k .

B Algebraic Immunity and Boolean Function Used in
KeeLoq

The security of KeeLoq depends on the quality of KeeLoq Boolean function
NLF. We have:

y = NLF (a, b, c, d, e) = d⊕ e⊕ac⊕ae⊕ bc⊕ be⊕ cd⊕de⊕ade⊕ace⊕abd⊕abc
Following [4] , this function is weak with respect to correlation attacks, it is

1-resilient but it is not 2-resilient and can in fact be quite well approximated by
the linear function d⊕ e.

From the point of view of algebraic cryptanalysis, the fundamental question
to consider is to determine the “Algebraic Immunity” of the NLF, which is also
known “Graph Algebraic Immunity” or “I/O degree”. We found that it is only 2,
and one can verify that this NLF allows one to write the following I/O equation
of degree 2 with no extra variables:

(e+ b+ a+ y) ∗ (c+ d+ y) = 0
However, there is only 1 such equation, and this equation by itself does not

give a lot of information on the NLF of KeeLoq. This equation is “naturally”
true with probability 3/4 whatever is the actual NLF used. It is therefore easy
to see that this equation alone does not fully specify the NLF, and taken alone
cannot be used in algebraic cryptanalysis. When used in combination with other
equations, this should allow some algebraic attacks to be faster, at least slightly.
At present time we are not aware of any concrete attack on KeeLoq that is
enabled or aided by using this equation.


