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Abstract. In 1992, Zheng, Pieprzyk and Seberry proposed a one-way
hashing algorithm called HAVAL, which compresses a message of arbi-
trary length into a digest of 128, 160, 192, 224 or 256 bits. It operates
in so called passes where each pass contains 32 steps. The number of
passes can be chosen equal to 3, 4 or 5. In this paper, we devise a new
differential path of 3-pass HAVAL with probability 2−114, which allows
us to design a second preimage attack on 3-pass HAVAL and partial
key recovery attacks on HMAC/NMAC-3-pass HAVAL. Our partial key-
recovery attack works with 2122 oracle queries, 5 · 232 memory bytes and
296 3-pass HAVAL computations.

Keywords : HAVAL, NMAC, HMAC, Second preimage attack, Key recovery
attack.

1 Introduction

In 2004 and 2005, Biham et al. and Wang et al. published several important
cryptanalytic articles [1, 2, 12–15] that demonstrate efficient collision search al-
gorithms for the MD4-family of hash functions. Their proposed neutral-bit and
message modification techniques make it possible to significantly improve pre-
vious known collision attacks on MD4, MD5, HAVAL, RIPEMD, SHA-0 and
SHA-1 [3, 9, 10, 17], including the second preimage attack on MD4 which finds a
second preimage for a random message with probability 2−56 [18].

There have also been several articles that present attacks on NMAC and
HMAC based on the MD4 family. In 2006, Kim et al. first proposed distin-
guishing and forgery attacks on NMAC and HMAC based on the full or re-
duced HAVAL, MD4, MD5, SHA-0 and SHA-1 [7] and Contini and Yin pre-
sented forgery and partial key recovery attacks on HMAC/NMAC-MD4, -SHA-0,
-reduced 34-round SHA-1 and NMAC-MD5 [4]. More recently, full key-recovery
attacks on HMAC/NMAC-MD4, reduced 61-round SHA-1 and NMAC-MD5
were proposed in FC 2007 [8] and in CRYPTO 2007 [6].
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The motivation of this paper is that 1) there are strong collision producing
differentials of HAVAL for collision attacks [10, 11], but no differential of HAVAL
has been proposed for second preimage attacks, and 2) there are distinguish-
ing/forgery attacks on HMAC/NMAC-HAVAL [7], but no key-recovery attack
has been proposed. This paper investigates if 3-pass HAVAL and HMAC/NMAC-
3-pass HAVAL are vulnerable to the second preimage and partial key recovery
attacks, respectively. (After our submission, we learned that Hongbo Yu worked
independently for her doctoral dissertation [16] on partial key recovery attacks
on HAVAL-based HMAC and second preimage attack on HAVAL).

The cryptographic hash function HAVAL was proposed by Y. Zheng et al. in
1992 [19]. It takes an input value of arbitrary length and digests it into variant
lengths of 128, 160, 192, 224 or 256 bits. In this paper, we present a new second
preimage differential path of 3-pass HAVAL with probability 2−114 and devise
a second preimage attack on 3-pass HAVAL, and a partial key recovery attack
on HMAC/NMAC-3-pass HAVAL with 2122 oracle queries, 5 · 232 memory bytes
and 296 3-pass HAVAL computations.

This paper is organized as follows. In Section 2, we describe HAVAL, HMAC,
NMAC, and notations. Next, we present a second preimage attack on 3-pass
HAVAL in Section 3 and apply it to recover a partial key of HMAC/NMAC-3-
pass HAVAL in Section 4. Finally, we conclude in Section 5.

2 Preliminaries

In this section, we give a brief description of the HAVAL hash function, the
HMAC/NMAC algorithms and notations used in the paper.

2.1 Description of HAVAL

HAVAL produces hashes in different lengths of 128, 160, 192, 224 and 256 bits.
It allows that users can choose the number of passes 3, 4 or 5, where each pass
contains 32 steps. It computes the hashes in the following procedure:

– Padding: an inserted message is padded into a multiple of 1024 bits.
– Compression function H: let M0,M1, · · · , MS be 1024-bit message blocks

and each M i consists of 32 32-bit words, that is, M i = M i
0||M i

1|| · · · || M i
31,

where M i
j is a 32-bit word.

• h0 = H(IV, M0), where IV is the initial value.
• h1 = H(h0,M

1), · · · , hs = H(hs−1,M
S)

– Output of HAVAL: Hn

The HAVAL compression function H processes 3, 4 or 5 passes. Let F1, F2,
F3, F4 and F5 be the five passes and (Din,M) be the input value of H, where
Din is a 256-bit initial block and M is a 1024-bit message block. Then the output
of the compression function Dout can be computed in the following way.
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E0 = Din, E1 = F1(E0, M), E2 = F2(E1,M), E3 = F3(E2,M);
E4 = F4(E3,M) (pass = 4, 5), E5 = F5(E4,M) (pass = 5);

Dout =





E3 ¢ E0, pass = 3
E4 ¢ E0, pass = 4
E5 ¢ E0, pass = 5

<<<7

φ>>>
7

ai-8 ai-7 ai-6 ai-5 ai-4 ai-3 ai-2 ai-1

ai-7 ai-6 ai-5 ai-4 ai-3 ai-2 ai-1 ai

>>>
11

f

W
(message)

C

Fig. 1. i-th step of HAVAL hash function

Fig. 1 shows the i-th step of HAVAL, where ai represents the updated 32-
bit value of the i-th step. Let a 1024-bit message block M be denoted M =
M0||M1|| · · · ||M30||M31, where Mi (i = 0, 1, · · · , 31) is a 32-bit word, then the
orders of the message words in each pass are as in Table 1.

Each pass employs a different Boolean function fi (i = 1, 2, 3, 4, 5) and a
different permutation function. The following fi is used in pass i:

f1(x6, x5, x4, x3, x2, x1, x0) = x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x0x1 ⊕ x0

f2(x6, x5, x4, x3, x2, x1, x0) = x1x2x3 ⊕ x2x4x5 ⊕ x1x2 ⊕ x1x4 ⊕
x2x6 ⊕ x3x5 ⊕ x4x5 ⊕ x0x2 ⊕ x0

f3(x6, x5, x4, x3, x2, x1, x0) = x1x2x3 ⊕ x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x0x3 ⊕ x0

f4(x6, x5, x4, x3, x2, x1, x0) = x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 ⊕ x1x4 ⊕ x2x6 ⊕
x3x4 ⊕ x3x5 ⊕ x3x6 ⊕ x4x5 ⊕ x4x6 ⊕ x0x4 ⊕ x0

f5(x6, x5, x4, x3, x2, x1, x0) = x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x0x1x2x3 ⊕ x0x5 ⊕ x0

Let ϕi,j be the permutation function of the j-th pass of the i-pass HAVAL.
Table 2 shows the ϕi,j used in each pass. In each step, the updated value ai is
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Table 1. Orders of message words

Pass1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pass2
5 14 26 18 11 28 7 16 0 23 20 22 1 10 4 8
30 3 21 9 17 24 29 6 19 12 15 13 2 25 31 27

Pass3
19 9 4 20 28 17 8 22 29 14 25 12 24 30 16 26
31 15 7 3 1 0 28 27 13 6 21 10 23 11 5 2

Pass4
24 4 0 14 2 7 28 23 26 6 30 20 18 25 19 3
22 11 31 21 8 27 12 9 1 29 5 15 17 10 16 13

Pass5
27 3 21 26 17 11 20 29 19 0 12 7 13 8 31 10
5 9 14 30 18 6 28 24 2 23 16 22 4 1 25 15

computed as

ai = (ai−8 ≫ 11) ¢ (f(ϕ(ai−7, ai−6, · · · , ai−1)) ≫ 7) ¢ Mi ¢ C,

where X ≫ i is the right cyclic rotation of X by i bits, and C is a constant.

Table 2. ϕi,j used in each pass

permutations x6 x5 x4 x3 x2 x1 x0

ϕ3,1 x1 x0 x3 x5 x6 x2 x4

ϕ3,2 x4 x2 x1 x0 x5 x3 x6

ϕ3,3 x6 x1 x2 x3 x4 x5 x0

ϕ4,1 x2 x6 x1 x4 x5 x3 x0

ϕ4,2 x3 x5 x2 x0 x1 x6 x4

ϕ4,3 x1 x4 x3 x6 x0 x2 x5

ϕ4,4 x6 x4 x0 x5 x2 x1 x3

ϕ5,1 x3 x4 x1 x0 x5 x2 x6

ϕ5,2 x6 x2 x1 x0 x3 x4 x5

ϕ5,3 x2 x6 x0 x4 x3 x1 x5

ϕ5,4 x1 x5 x3 x2 x0 x4 x6

ϕ5,5 x2 x5 x0 x6 x4 x3 x1

2.2 Description of HMAC/NMAC

Fig. 2 shows NMAC and HMAC based on a compression function f which maps
{0, 1}n × {0, 1}b to {0, 1}n. The K1 and K2 are all n-bit keys and the K =
K||0b−n, where K is an n-bit key. The opad is formed by repeating the byte
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‘0x36’ as many times as needed to get a b-bit block, and the ipad is defined
similarly using the byte ‘0x5c’.

Let F : {IV } × ({0, 1}b)∗ → {0, 1}n be the iterated hash function defined
as F (IV, M1||M2|| · · · ||MS) = f(· · · f(f(IV,M1),M2) · · · ,MS), where M i is a
b bit message. Let g be a padding method, g(x) = x||10t||bin64(x), where t is
the smallest non-negative integer such that g(x) is a multiple of b and bini(x)
is the i-bit binary representation of x. Then, NMAC and HMAC are defined as
follows:

NMACK1,K2(M) = H(K2, g(H(K1, g(M))))
HMACK(M) = H(IV, g(K ⊕ opad||H(IV, g(K ⊕ ipad||M)))).

f

f f fIV

M1 MS

. . .

h1 h s-1

hs
padding

fIV

f

f f fK1

K2

M1 M2 MS

. . .

h1 h2 hs-1

hs

padding

K      ipad

hs+1

K      opad

hs+1

Fig. 2. NMAC and HMAC

2.3 Notations

Let M and M ′ be 1024-bit messages such that M = M0||M1|| · · · ||M31 and M ′ =
M ′

0||M ′
1|| · · · ||M ′

31, where Mi (i = 0, 1, 2, · · · , 31) and M ′
j (j = 0, 1, 2, · · · , 31) are
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32-bit words. We denote by ai (resp., a′i) the updated value of the i-th step using
the message M (resp., M ′). Let ti (resp., t′i) be the output value of the Boolean
function of the i-th step using the message M (resp., M ′). The j-th bits of ai

and ti are denoted ai,j and ti,j . Additionally, we use several following notations
in our attacks, where 0 ≤ j ≤ 31.

– ai[j] : ai,j = 0, a′i,j = 1,
– ai[−j]: ai,j = 1, a′i,j = 0,
– ti[j] : ti,j = 0, t′i,j = 1,
– ti[−j]: ti,j = 1, t′i,j = 0.

3 Second Preimage Attack on 3-Pass HAVAL

In this section, we show how to construct a second preimage differential path
of 3-pass HAVAL. Using this differential path, we find a second preimage of 3-
pass HAVAL with probability 2−114, i.e., for a given message M , we find another
message M ′ with probability 2−114 satisfying H(M) = H(M ′), where H is 3-pass
HAVAL. Our differential path of 3-pass HAVAL is stronger than the previous
ones [7, 9, 11, 12] against the second preimage attack.

3.1 Second Preimage Differential Path of 3-Pass HAVAL

Let two 1024-bit message blocks M = M0||M1||M2|| · · · ||M31 and M ′ = M ′
0||M ′

1||
M ′

2|| · · · ||M ′
31 satisfy Mi = M ′

i for i = 0, 1, · · · , 21, 23, 24, · · · , 31 and M22 ⊕
M ′

22 = 231. Then we can use these two messages to construct a second preimage
differential path of 3-pass HAVAL with probability 2−114. Table 3 shows our
second preimage differential path of 3-pass HAVAL, which has been constructed
as follows.

First of all, from the message pair we get the input difference to the 23-rd step
(∆a15, ∆a16,∆a17,∆a18,∆a19, ∆a20,∆a21, ∆a22) = (0, 0, 0, 0, 0, 0, 0, a22[31]) if
a condition a22,31 = 0 holds. Recall that (ai−8, ai−7, · · · , ai−2, ai−1) is the input
state to the i-th step. We assume that the output differences of the Boolean
functions from the 23-rd step to the 36-th step are all zeroes. Then we can
obtain the input difference to the 37-th step is (0, a30[20], 0, 0, 0, 0, 0, 0). It is
easy to see that the required assumption works if several conditions hold in
our differential, which we call sufficient conditions. For example, consider a dif-
ference ∆t24. The input difference to the 24-th step is (∆a16,∆a17,∆a18,∆a19,
∆a20,∆a21,∆a22,∆a23) = (0, 0, 0, 0, 0, 0, a22[31], 0). The permutation is ϕ(x6, x5,
x4, x3, x2, x1, x0) = (x1, x0, x3, x5, x6, x2, x4) and the Boolean function is f(x6, x5,
x4, x3, x2, x1, x0) = x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x0x1 ⊕ x0 in the 24-th step. Thus,
f(ϕ(x6, x5, x4, x3, x2, x1, x0)) = x2x3⊕x6x0⊕x5x1⊕x4x2⊕x4 and the most sig-
nificant bit of the output of the Boolean function in the 24-th step is a20,31a21,31⊕
a17,31a23,31⊕ a18,31a22,31⊕ a19,31a21,31⊕ a19,31. If a18,31 = 0, then the difference
of a22,31 does not have effect on the output difference of the Boolean function
and thus ∆t24 = 0. Thus, a18,31 = 0 is one of the sufficient conditions. We show
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Table 3. Second preimage differential path of 3-pass HAVAL

..

step ∆Mi ∆ti ∆ai−8 ∆ai−7 ∆ai−6 ∆ai−5 ∆ai−4 ∆ai−3 ∆ai−2 ∆ai−1

0 0 0 0 0 0 0 0 0 0 0
· · · · · · · · · · · · · · ·
21 0 0 0 0 0 0 0 0 0 0
22 ±31 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 31
24 0 0 0 0 0 0 0 0 31 0
25 0 0 0 0 0 0 0 31 0 0
26 0 0 0 0 0 0 31 0 0 0
27 0 0 0 0 0 31 0 0 0 0
28 0 0 0 0 31 0 0 0 0 0
29 0 0 0 31 0 0 0 0 0 0
30 0 0 31 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 20
32 0 0 0 0 0 0 0 0 20 0
33 0 0 0 0 0 0 0 20 0 0
34 0 0 0 0 0 0 20 0 0 0
35 0 0 0 0 0 20 0 0 0 0
36 0 0 0 0 20 0 0 0 0 0
37 0 20 0 20 0 0 0 0 0 0
38 0 0 20 0 0 0 0 0 0 13
39 0 0 0 0 0 0 0 0 13 9
40 0 0 0 0 0 0 0 13 9 0
41 0 0 0 0 0 0 13 9 0 0
42 0 13 0 0 0 13 9 0 0 0
43 ±31 ±6 0 0 13 9 0 0 0 6
44 0 0 0 13 9 0 0 0 6 0
45 0 -9 13 9 0 0 0 6 0 0
46 0 0 9 0 0 0 6 0 0 0
47 0 0 0 0 0 6 0 0 0 30
48 0 0 0 0 6 0 0 0 30 0
49 0 0 0 6 0 0 0 30 0 0
50 0 0 6 0 0 0 30 0 0 0
51 0 0 0 0 0 30 0 0 0 -27,28
52 0 0 0 0 30 0 0 0 -27,28 0
53 0 30 0 30 0 0 0 -27,28 0 0
54 0 0 30 0 0 0 -27,28 0 0 23
55 0 28 0 0 0 -27,28 0 0 23 19
56 0 21 0 0 -27,28 0 0 23 19 21
57 0 0 0 -27,28 0 0 23 19 21 -14,15
58 0 -23 -27,28 0 0 23 19 21 -14,15 0
59 0 0 0 0 23 19 21 -14,15 0 0
60 0 0 0 23 19 21 -14,15 0 0 0
61 0 -19 23 19 21 -14,15 0 0 0 0
62 0 -15 19 21 -14,15 0 0 0 0 0
63 0 0 21 -14,15 0 0 0 0 0 0
64 0 -10 -14,15 0 0 0 0 0 0 10
65 0 0 0 0 0 0 0 0 10 0
66 0 0 0 0 0 0 0 10 0 0
67 0 0 0 0 0 0 10 0 0 0
68 0 0 0 0 0 10 0 0 0 0
69 0 0 0 0 10 0 0 0 0 0
70 0 0 0 10 0 0 0 0 0 0
71 ±31 0 10 0 0 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0 0
· · · · · · · · · · · · · · ·
95 0 0 0 0 0 0 0 0 0 0
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in Table 5 of appendix all the sufficient conditions which satisfy our differential
path .

In order to compute the probability that a message M satisfies the sufficient
conditions listed in Table 5, we need to check the dependency of the conditions.
To make the problem easier we first solve and simplify the conditions. In this
process we may reduce the number of the sufficient conditions. Consider the
conditions on the 20-th bit from the 31-st step to the 37-th step in Table 5.

1. 31-st step : a30,20 = 0, a24,20 = 0
2. 32-nd step : a29,20a26,20 ⊕ a28,20 ⊕ a29,20 = 0
3. 33-rd step : a31,20a27,20 ⊕ a32,20 ⊕ a31,20 = 0
4. 34-th step : a33,20a28,20 ⊕ a28,20 ⊕ a32,20 = 0
5. 35-th step : a29,20 = 0
6. 36-th step : a35,20a32,20 ⊕ a34,20a33,20 ⊕ a32,20 ⊕ a31,20 ⊕ a35,20 = 0
7. 37-th step : a31,20 = 0, a33,20a35,20 ⊕ a36,20a34,20 ⊕ a35,20a34,20 = 0

In the 32-nd step, we can simplify the condition to a28,20 = 0 by inserting
the value a29,20 = 0 which is the condition in the 35-th step. Using this con-
dition a28,20 = 0, we can obtain a32,20 = 0 in the 34-th step. This simplified
condition a32,20 = 0 and the 37-th step condition a31,20 = 0 make the 33-rd
step condition always hold. Moreover, the 36-th step condition is simplified to
a34,20a33,20 ⊕ a35,20 = 0 due to the conditions a31,20 = 0 and a32,20 = 0. Fol-
lowing is the simplified conditions for steps 31-37 (note that the number of the
sufficient conditions is reduced from 9 to 8 by solving the conditions):

1. 31-st step : a30,20 = 0, a24,20 = 0
2. 32-nd step : a28,20 = 0
3. 33-rd step : no condition
4. 34-th step : a32,20 = 0
5. 35-th step : a29,20 = 0
6. 36-th step : a34,20a33,20 ⊕ a35,20 = 0
7. 37-th step : a31,20 = 0, a33,20a35,20 ⊕ a36,20a34,20 ⊕ a35,20a34,20 = 0

Table 6 in appendix collects all the simplified conditions for those of Table
5. We notice that the number of the sufficient conditions listed in Table 6 is 112,
which seems to make the probability that a message satisfy all these conditions
is 2−112. However, it is not 2−112, but approximately 2−114. This is due to the
fact that there are still dependencies in some conditions. For example, consider
the conditions on the 13-th bit from the 38-th step to the 41-st step in Table 6.

1. 38-th step : a38,13 = 1, a34,13a32,13 ⊕ a35,13 = 0
2. 39-th step : a33,13 6= a35,13

3. 40-th step : a34,13 6= a39,13

4. 41-st step : a40,13a35,13 ⊕ a35,13 ⊕ a39,13 = 1

These 5 conditions do not hold with probability 2−5, but with probability 2−3· 3
16 .

The reason is as follows. The probability that the condition a38,13 = 1 is satisfied
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is 2−1. Table 4 lists all the possible values of a32,13, a34,13 and a35,13 which satisfy
a34,13a32,13 ⊕ a35,13 = 0. The probability that this condition holds is 1

2 (= 4
8 )

according to Table 4. In the 39-th step, the probability that a33,13 6= a35,13 is
satisfied is 2−1 since a33,13 is used only in the 39-th step. In the 40-th and 41-st
steps, if a35,13 = 0, then a39,13 and a34,13 should be 0 and 1, respectively, and
a40,13 is either 0 or 1. The probability that a35,13 = 0 and a34,13 = 1 hold is 1

4 (one
out of four cases, see Table 4). Thus the probability that a34,13 = 1, a35,13 = 0,
and a39,13 = 0 are satisfied is 1

8 (= 1
4 · 12 ) (recall that a40,13 does not have effect on

the condition a40,13a35,13⊕a35,13⊕a39,13 = 1). If a35,13 = 1 and a39,13 = 1, then
a40,13 = 1 and a34,13 = 0 due to the conditions a40,13a35,13 ⊕ a35,13 ⊕ a39,13 = 1
and a34,13 6= a39,13. However, this is a contradiction to the condition of the 38-
th step (see Table 4), and thus if a35,13 = 1, then a39,13 = 0, a40,13 = 1 and
a34,13 = 1. The probability that a35,13 = 1 and a34,13 = 1 hold is 1

4 by Table 4
and each probability of a39,13 = 0 and a40,13 = 1 is 1

2 , so the probability that
(a34,13, a35,13, a39,13, a40,13) = (1, 1, 0, 1) is 1

16 . Therefore, we can compute the
probability that the conditions in the 40-th and 41-st step hold is 3

16 (= 1
8 + 1

16 ),
leading to a total probability 2−3 · 3

16 for the above 5 conditions. In this way, we
analyze the probability that the sufficient conditions in Table 6 are satisfied is
2−114.

Table 4. Possible values for the conditions on the 38-th, 40-th and 41-st step

step a32,13 a34,13 a35,13 probability

38
1 1 1 1/8
0 1 0 1/8
1 0 0 1/8
0 0 0 1/8

step a34,13 a35,13 a39,13 a40,13 probability

40,
41

1 0 0 0 1/4× 1/2× 1/2
1 0 0 1 1/4× 1/2× 1/2
1 1 0 1 1/4× 1/2× 1/2

3.2 Attack on 3-Pass HAVAL

The second preimage resistance on a hash function plays an important role to
block the attacker to produce a second preimage when a meaningful and sensi-
tive message (e.g. a finance-related message) is used. In literature, it is defined
as follows:

Second preimage resistance on a hash function H. for any given mes-
sage M , it is computationally infeasible to find another message M ′ satisfying
H(M) = H(M ′)
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It follows that the second preimage attack on a hash function exists if for a
given message M there is an algorithm that finds another message M ′ such that
H(M) = H(M ′) with probability larger than 2−n, where n is the bit-length of
hash values. The second preimage attack on 3-pass HAVAL works due to our
differential path;

– For a given message M , the probability that M holds the sufficient conditions
listed in Table 6 is 2−114.

– If the message M holds the sufficient conditions, then the message M ′ which
only differs from M at the most significant bit of the 22-nd message word
has a same hash value.

4 Partial Key-Recovery Attacks on HMAC/NMAC-3-
Pass HAVAL

In this section, we present partial key recovery attacks on HMAC/NMAC-3-
pass HAVAL, which works based on our differential path described in Section 3.
More precisely, we show how to find the partial key K1 of NMAC-3-pass HAVAL
and f(K̄ ⊕ ipad) of HMAC-3-pass HAVAL (note that knowing f(K̄ ⊕ ipad) and
f(K̄ ⊕ opad) allows to compute the MAC value for any message). Since HMAC
= NMAC if f(K̄⊕ ipad) = K1 and f(K̄⊕opad) = K2, we focus on the NMAC-3-
pass HAVAL attack which finds K1 with message/MAC pairs. Recall that K1 is
placed at the position of the initial state in NMAC. This implies that recovering
the initial value of 3-pass HAVAL is equivalent to getting the partial key K1 of
NMAC-3-pass HAVAL.

The main idea behind of our attack is that the attacker can recover the initial
state of NMAC-3-pass HAVAL (in our attack it is K1) if he knows a 256-bit input
value at any step of 3-pass HAVAL. This idea has firstly been introduced in [4].
In this section, we first find a16, a18, a21 and a23 which are used as a part of an
input value to the 24-th step. Remaining four-word input values a17, a19, a20 and
a22 to the 24-th step is then found by 2128 exhaustive searches. Let ai,j be the
j-th bit of ai and γi = (ai−8 ≫ 11) ¢ (ti ≫ 7) ¢ C, where C is a constant used
in step i (note γi ¢ Mi = ai).

The value a16 is then revealed by the following Algorithm.

Algorithm 1. In order to recover the value a16, we use a condition a16,31 = 0
depicted in Table 6. The procedure goes as follows:

1. The attacker has access to the oracle O (=NMAC-3-pass HAVAL) and makes
2121 queries for 2120 message pairs M = M0,M1, · · · ,M30,M31 and M ′ =
M ′

0,M
′
1, · · · ,M ′

30,M
′
31 that have the message difference given in Table 5.

Among the 2120 message pairs, M0,M1, · · · ,M15 and M ′
0,M

′
1, · · · , M ′

15 are
all identically fixed, M16 and M ′

16 vary in all 232 possible values, and 288 mes-
sage pairs in the remaining words M17, M18, · · · ,M31 and M ′

17,M
′
18, · · · ,M ′

31
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are randomly chosen. In this case, what the attacker knows is that γ16 is iden-
tically fixed for all the 2120 message pairs even though he does not know the
actual value γ16.

2. For each candidate value γ16 in 0, 1, · · · , 232 − 1;
(a) Choose the message pairs (M, M ′) that make collisions for the corre-

sponding MAC pairs.
(b) Count the number of the message pairs chosen in Step 2(a) that satisfy

msb(γ16 ¢ M16) = 1.
3. Output γ16 ¢ M16 as a16, where γ16 has the least count number in Step 2

(b).

As mentioned before, this algorithm works due to our differential with prob-
ability 2−114. Notice that our differential encompasses a sufficient condition
a16,31 = 0, and each message pair among the 2120 message pairs satisfies the
condition a16,31 = 0, our differential holds with probability 2−113 with respect
to this message pair. If the message pair (M,M ′) makes the most significant
bits of a16 and a′16 be 1, then the probability that the message pair (M, M ′)
makes a collision is 2−121(= 2−113 · 2−8), for it forces additionally 8 more suffi-
cient conditions in our collision producing differential. The reason is as follows. If
a16,31 = 1, then a difference ∆t23 is not zero, but ±231. However, this difference
value can be canceled by the output difference of the Boolean function in the
31-st step. In this procedure, each of steps 24-31 requires one more additional
condition, leading to total 8 additional conditions. Thus, the probability that
the message pair (M, M ′) has a same MAC value is not a random probability
but 2−121, where the most significant bits of a16 and a′16 are 1. It follows that
if the right γ16 is guessed, we expect 2−2(= 2119 · 2−121) collision pairs. On
the other hand, if γ16 is wrongly guessed, the expectation of collision pairs is
25(= 2118 ·2−113 +2118 ·2−121), (note that in the group of the message pairs such
that msb(γ16 ¢ M16) = 1 there are on average half message pairs satisfying the
actual a16,31 = 0). Since the probability that a wrong γ16 does not cause any
collision pair is (1−2−113)2

118 · (1−2−121)2
118

< (1−2−113)2
118

(≈ e−32) < 2−32,
we expect that there is no wrong γ16 which leads to no collision in Step 2. Hence,
we can determine the right γ16. To summarize, Algorithm 1 requires 2121 oracle
queries (in Step 1) and 232 memory bytes (the memory complexity of this attack
is dominated by the counters for γ16).

Next, we show how to recover the value a18, for which we use the condition
a18,31 = 0 required in our differential. Since there is no condition on a17 (see
Table 6), the attacker chooses any message word M17. The main idea is similar
to Algorithm 1.

First of all, the attacker selects 2119 message pairs (M,M ′) that have the mes-
sage difference given in Table 6, where M0,M1, · · · ,M17 and M ′

0,M
′
1, · · · ,M ′

17

are all identically fixed (M0,M1, · · · ,M16 and M ′
0, M

′
1, · · · ,M ′

16 should be the
same as those selected in Algorithm 1, which leads to a16,31 = 0), M18 and M ′

18

vary in all 232 possible values, and 287 message pairs in the remaining words
are randomly chosen. Once the attacker gets the corresponding MAC pairs, he
performs Steps 2 and 3 of Algorithm 1 to recover a18 by setting γ18, M18, a18
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instead of γ16, M16 and a16. The reason why recovering a18 requires half of the
message pairs, compared to when recovering a16, is that this attack algorithm
exploits message pairs satisfying a16,31 = 0 from the beginning. It increases by
twice the probability that our differential holds. The remaining analysis is the
same as that of Algorithm 1. To summarize, recovering a18 requires 2120 oracle
queries.

Next, let us see how to recover a21. In order to recover a21 we need to use
the condition a20,31 = a21,31, which is of a different form from the previous two
conditions a16,31 = a18,31 = 0. However, the core in our attack is that a20,31 is
always a same value if M0,M1, · · · ,M20 and M ′

0,M
′
1, · · · ,M ′

20 are all identically
fixed in all required message pairs, i.e, in 2118 message pairs (note that all these
message pairs satisfy a16,31 = a18,31 = 0, which the attacker can select from the
above algorithms). Similarly, among the 2118 pairs, M21 and M ′

21 vary in all 232

possible values and 286 pairs of remaining words are randomly chosen.

Algorithm 2. The attack algorithm to recover a21 goes as follows:

1. The attacker chooses the 2118 message pairs as above and asks the oracle O
for the corresponding 2118 MAC pairs.

2. Choose the message pairs (M,M ′) that make collisions for the corresponding
MAC pairs.

3. For each candidate value γ21 in 0, 1, · · · , 232 − 1;
(a) Divide two groups of which one contains message pairs that satisfy

msb(γ21 ¢ M21) = 0 and the other one contains message pairs that
satisfy msb(γ21 ¢ M21) = 1.

(b) Count the number of message pairs in each group that make collisions
for the corresponding MAC pairs

4. Output γ21 ¢M21 as a21, where γ21 is the value that has a group containing
the least count, and M21 is the one of the values satisfying a20,31 = a21,31.

If the values a20 and a21 satisfy the sufficient condition a20,31 = a21,31, then
the probability that the message pair (M, M ′) makes a collision is 2−111 (note
that the three conditions a16,31 = a18,31 = 0, a21,31 = a20,31 are excluded in the
list of the sufficient conditions). On the other hand, if a21,31 6= a20,31, then the
probability that the message pair (M,M ′) makes a collision is 2−119 (similarly, 8
more conditions are additionally needed). In case the right γ21 is guessed, one of
the two groups is expected to have 2−111 · 2117 = 26 collision pairs and the other
one is expected to have 2−119 · 2117 = 2−2 collision pair. On the other hand, if a
wrong γ is guessed, then the both groups are expected to have 2−111 · 2116 = 25

collision pairs each. It implies that the probability that a wrong γ16 does not
cause any collision pair is about e−32 < 2−32, and thus there is no wrong γ21

to pass Step 3. To summarize, Algorithm 2 needs 2119 oracle queries and 232

memory bytes. Recovering a23 is quite similar to recovering a16 and a18, which
requires 2118 oracle queries.
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Exhaustive search for the remaining four words. Using the above algo-
rithms, we can compute the 128-bit a16, a18, a21 and a23 values. The remaining
128-bit a17, a19, a20 and a22 values are found by the following algorithm. We con-
sider a message pair (M, M ′) selected from the above algorithms which makes a
collision.

1. Guess a 128-bit a17, a19, a20, a22 value;
(a) Check with the computed a16, a18, a21, a23 and the guessed a17, a19, a20, a22

that the message pair (M,M ′) makes a collision. If so, we determine the
guessed value as the right value. Otherwise, repeat Step 1.

(b) For the given message pair (M,M ′) and a16, a17, · · · , a22, recover the
initial value.

If a wrong value is guessed, the probability that it causes a collision is 2−256.
Since the number of wrong a17, a19, a20, a22 tested in the attack is 2128 at most,
we can recover the right initial value. The time complexity of the exhaustive
search step is 2128 3-pass HAVAL computations.

As a result, our partial key recovery attack has 2121+2120+2119+2118 = 2121.9

oracle queries and 2128 3-pass HAVAL computations.

Reducing the number of the 3-pass HAVAL computations. As described
above, our partial key-recovery attack is completed by two phases; the first phase
is to recover some portions of the 256-bit input value at step i, and the second is
the exhaustive search phase for its remaining input bits. If we apply our attack to
the input value to step 29 instead of step 24, then we can recover a21, a23, a24, a26

and a28 from the first phase with 2122 oracle queries and we recover the remaining
a22, a25 and a27 with 296 3-pass HAVAL computations from the second phase.

5 Conclusion

In this paper, we have presented a new second preimage differential path of 3-
pass HAVAL with probability 2−114 and exploited it to devise a second preimage
attack on 3-pass HAVAL, and partial key-recovery attacks on HMAC/NMAC-
3-pass HAVAL with 2122 oracle queries, 5 · 232 memory bytes and 296 3-pass
HAVAL computations. We expect that our attacks would be useful for the further
analysis of HAVAL and HMAC/NMAC-HAVAL (e.g., full key-recovery attacks
on HMAC/NMAC-HAVAL).
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A Sufficient Conditions of the Second Preimage
Differential Path of 3-Pass HAVAL

Table 5 shows the sufficient conditions of the second preimage differential path
of 3-pass HAVAL, which are derived from the property of the Boolean function
fi of appendix B. We solve and simplify the conditions of Table 5 and list the
solutions in Table 6.
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Table 5. Sufficient conditions of the second preimage differential path of 3-pass HAVAL

S Sufficient conditions
23 a16,31 = 0, a22,31 = 0
24 a18,31 = 0
25 a20,31 = a21,31
26 a23,31 = 0
27 a24,31 = 1
28 a26,31 = 0
29 a28,31 = 0
31 a30,20 = 0, a24,20 = 0
32 a29,20a26,20 ⊕ a28,20 ⊕ a29,20 = 0
33 a31,20a27,20 ⊕ a32,20 ⊕ a31,20 = 0
34 a33,20a28,20 ⊕ a28,20 ⊕ a32,20 = 0
35 a29,20 = 0
36 a35,20a32,20 ⊕ a34,20a33,20 ⊕ a32,20 ⊕ a31,20 ⊕ a35,20 = 0
37 a31,20 = 0, a33,20a35,20 ⊕ a36,20a34,20 ⊕ a35,20a34,20 = 0
38 a37,13 = 0, a34,13a32,13 ⊕ a35,13 = 0
39 a38,9 = 0, a35,9a33,9 ⊕ a36,9 = 0, a36,13a33,13 ⊕ a35,13 ⊕ a36,13 = 0
40 a37,9a34,9 ⊕ a36,9 ⊕ a37,9 = 0, a38,13a34,13 ⊕ a39,13 ⊕ a38,13 = 0
41 a39,9a35,9 ⊕ a40,9 ⊕ a39,9 = 0, a40,13a35,13 ⊕ a35,13 ⊕ a39,13 = 0
42 a41,9a36,9 ⊕ a36,9 ⊕ a40,9 = 0, a36,13 = 1
43 a42,6 = 0, a37,9 = 0, a39,6a37,6 ⊕ a40,6 = 0,

a42,13a39,13 ⊕ a41,13a40,13 ⊕ a39,13 ⊕ a38,13 ⊕ a36,13 = 0
44 a41,6a38,6 ⊕ a40,6 ⊕ a41,6 = 0, a38,13 = 1, a43,9a40,9 ⊕ a42,9a41,9 ⊕ a40,9 ⊕ a39,9 ⊕ a37,9 = 0
45 a43,6a39,6 ⊕ a44,6 ⊕ a43,6 = 0, a39,9 = 0,

a44,9a41,9a39,9 ⊕ a39,9a43,9a42,9 ⊕ a41,9a43,9 ⊕ a39,9a40,9 ⊕ a44,9a41,9 ⊕ a43,9a42,9 = 1
46 a45,6a40,6 ⊕ a40,6 ⊕ a44,6 = 0
47 a46,30 = 0, a43,30a41,30 ⊕ a44,30 = 0, a41,6 = 0
48 a45,30a42,30 ⊕ a44,30 ⊕ a45,30 = 0, a47,6a44,6 ⊕ a46,6a45,6 ⊕ a44,6 ⊕ a43,6 ⊕ a41,6 = 0
49 a47,30a43,30 ⊕ a48,30 ⊕ a47,30 = 0, a43,6 = 1
50 a49,30a44,30 ⊕ a44,30 ⊕ a48,30 = 0
51 a50,27 = 1, a50,28 = 0, a47,27a45,27 ⊕ a48,27 = 0, a47,28a45,28 ⊕ a48,28 = 0, a45,30 = 0
52 a49,27a46,27 ⊕ a48,27 ⊕ a49,27 = 0, a49,28a46,28 ⊕ a48,28 ⊕ a49,28 = 0,

a51,30a48,30 ⊕ a50,30a49,30 ⊕ a48,30 ⊕ a47,30 ⊕ a45,30 = 0
53 a51,27a47,27 ⊕ a52,27 ⊕ a51,27 = 0, a51,28a47,28 ⊕ a52,28 ⊕ a51,28 = 0, a47,30 = 0
54 a53,23 = 0, a50,23a48,23 ⊕ a51,23 = 0, a53,27a48,27 ⊕ a48,27 ⊕ a52,27 = 0,

a53,28a48,28 ⊕ a48,28 ⊕ a52,28 = 0
55 a54,19 = 0, a51,19a49,19 ⊕ a52,19 = 0, a49,23 ⊕ a51,23 = 0, a49,27 = 0, a49,28 = 1
56 a55,21 = 0, a52,21 = 1, a50,21 = 1, ⊕ a53,21 = 1, a53,19a50,19 ⊕ a52,19 ⊕ a53,19 = 0,

a50,23 ⊕ a55,23 = 1, a55,27a52,27 ⊕ a54,27a53,27 ⊕ a52,27 ⊕ a51,27 ⊕ a49,27 = 0,
a55,28a52,28 ⊕ a54,28a53,28 ⊕ a52,28 ⊕ a51,28 ⊕ a49,28 = 0, a52,21a51,21 ⊕ a51,21 = 0

57 a56,14 = 1, a56,15 = 0, a54,21a51,21 ⊕ a53,21 ⊕ a54,21 = 0, a56,23a51,23 ⊕ a51,23 ⊕ a55,23 = 0,
a55,19a51,19 ⊕ a56,19 ⊕ a55,19 = 0, a51,27 = 1, a51,28 = 1

58 a55,14a52,14 ⊕ a55,14 ⊕ a54,14 = 0, a55,15a52,15 ⊕ a55,15 ⊕ a54,15 = 0,
a56,21a52,21 ⊕ a57,21 ⊕ a56,21 = 0, a57,19a52,19 ⊕ a52,19 ⊕ a56,19 = 0,
a57,23 ⊕ a56,23 ⊕ a57,23a55,23 = 0, a52,23 = 1

59 a57,14a53,14 ⊕ a58,14 ⊕ a57,14 = 0, a57,15a53,15 ⊕ a58,15 ⊕ a57,15 = 0, a53,19 = 0,
a58,21a53,21 ⊕ a53,21 ⊕ a57,21 = 0, a58,23a55,23 ⊕ a57,23a56,23 ⊕ a51,23 = 1

60 a59,14a54,14 ⊕ a54,14 = 0, a59,15a54,15 ⊕ a54,15 ⊕ a58,15 = 0,
a59,19a56,19 ⊕ a58,19a57,19 ⊕ a56,19 ⊕ a55,19 ⊕ a53,19 = 0, a54,21 = 0, a54,23 = 1

61 a55,14 = 0, a55,15 = 0, a55,19 = 0, a60,21a57,21 ⊕ a59,21a58,21 ⊕ a57,21 ⊕ a56,21 ⊕ a53,21 = 0
a59,19a57,19 ⊕ a60,19a58,19 ⊕ a59,19a58,19 = 1

62 a61,14a58,14 ⊕ a60,14a59,14 ⊕ a58,14 ⊕ a57,14 ⊕ a61,14 = 0, a60,15a59,15 ⊕ a58,15 = 1
a61,15a58,15 ⊕ a60,15a59,15 ⊕ a58,15 ⊕ a57,15 ⊕ a61,15 = 1, a56,21 = 1

63 a57,14 = 1, a57,15 = 1
64 a60,10 = 0, a63,10 = 0, a61,10a58,10 ⊕ a62,10a59,10 = 1
67 a62,10a61,10 ⊕ a60,10 ⊕ a66,10 = 0
68 a64,10a62,10 ⊕ a66,10 = 0
69 a65,10a64,10 ⊕ a66,10 = 0
70 a66,10 = 0
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Table 6. Simplified sufficient conditions of the second preimage differential path of
3-pass HAVAL

S Sufficient conditions

a16,31 = 0, a18,31 = 0, a20,31 = a21,31, a22,31 = 0

23 a23,31 = 0

24 a24,31 = 1, a24,20 = 0

26 a26,31 = 0

28 a28,31 = 0, a28,20 = 0

29 a29,20 = 0

30 a30,20 = 0

31 a31,20 = 0

32 a32,20 = 0

36 a36,13 = 1, a36,9 = 0, a34,20a33,20 ⊕ a35,20 = 0

37 a37,9 = 0, a37,6 = 0, a37,13 = 0, a33,20a35,20 ⊕ a36,20a34,20 ⊕ a35,20a34,20 = 0

38 a38,13 = 1, a38,9 = 0, a34,13a32,13 ⊕ a35,13 = 0,

39 a39,6 = 1, a39,9 = 0, a35,9a33,9 = 0, a33,13 6= a35,13

40 a40,9 = 0, a40,6 = 0, a34,13 6= a39,13

41 a41,6 = 0, a40,13a35,13 ⊕ a35,13 ⊕ a39,13 = 0

42 a42,6 = 0

43 a43,6 = 1, a42,13a39,13 ⊕ a41,13a40,13 ⊕ a39,13 = 0

44 a44,30 = 0, a44,6 = 0, a42,9a41,9 = 0

45 a45,6 = 1, a45,30 = 0, a41,9a43,9 ⊕ a44,9a41,9 ⊕ a43,9a42,9 = 1

46 a46,6 = 1, a46,30 = 0

47 a47,30 = 0, a43,30a41,30 = 0

48 a48,30 = 0

49 a49,27 = 0, a49,28 = 1

50 a50,21 = 1, a50,27 = 1, a50,28 = 0

51 a51,27 = 1, a51,28 = 1, a51,15 = 0, a51,14 = 0,
a47,27a45,27 ⊕ a48,27 = 0, a47,28a45,28 ⊕ a48,28 = 0

52 a52,19 = 0, a52,21 = 1, a50,30a49,30 = 0, a52,23 = 1, a48,27 = 0, a46,28 = a48,28

53 a53,19 = 0, a53,14 = 0, a53,15 = 1, a53,21 = 0, a53,23 = 1, a47,28 ⊕ a52,28 = 1

54 a54,14 = 0, a54,15 = 0, a54,19 = 0, a50,23a48,23 ⊕ a51,23 = 0, a52,27 = 0,
a54,21 = 0, a54,23 = 1, a53,28a48,28 ⊕ a48,28 ⊕ a52,28 = 0

55 a55,14 = 0, a55,15 = 0, a55,19 = 0, a55,21 = 0, a51,19a49,19 = 0, a49,23 = a51,23

56 a56,19 = 0, a56,15 = 0, a56,14 = 1, a56,21 = 1, a50,23 = a55,23

a54,27a53,27 ⊕ a55,27 = 1, a55,28a52,28 ⊕ a54,28a53,28 ⊕ a52,28 ⊕ a51,28 ⊕ a55,28 = 0

57 a57,14 = 1, a57,15 = 1, a57,21 = 0, a56,23a51,23 ⊕ a51,23 ⊕ a55,23 = 0

58 a58,21 = 1, a58,14 = 0, a58,15 = 0, a57,23 ⊕ a56,23 ⊕ a57,23a55,23 = 0

59 a59,21 = 1, a58,23a55,23 ⊕ a57,23a56,23 ⊕ a55,23 ⊕ a51,23 = 1, a59,15 = 1

60 a58,19a57,19 ⊕ a55,19 = 0, a60,10 = 0, a60,15 = 1

61 a59,19a57,19 ⊕ a60,19a58,19 ⊕ a59,19a58,19 = 1, a61,15 = 1

62 a60,14a59,14 ⊕ a61,14 = 1

63 a63,10 = 0

64 a61,10a58,10 ⊕ a62,10a59,10 = 1

66 a66,10 = 0

67 a62,10a61,10 = 0

68 a64,10a62,10 = 0

69 a65,10a64,10 = 0
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B Property of the Boolean Functions f1, f2 and f3

Recall that the input value of the i-th step is denoted ai−8, ai−7, · · · , ai−1 and
the output value of the Boolean functions of the i-th step is denoted ti. Tables
7, 8 and 9 show the relations between the input difference and ti of the i-th
step. In the column of Assumption in the Tables, as[j] represents the difference
(∆ai−8, ai−7, · · · , ∆as, · · · ,∆ai−1) = (0, 0, · · · , as[j], 0, · · · , 0) for i − 1 ≤ s ≤
i − 7 and ti[] means that the output difference of the Boolean function of the
i-th step is zero (see Section 2.3 for the notations as[j] and ti[j]). Note that
even though the sign is altered from +j to −j in both as[j] and ti[j], still the
conditions are the same as in Tables 7, 8 and 9, however if the sign is altered
only in one of as[j] and ti[j], the second conditions should be 1 (and the first
ones are not altered).

Table 7. Property of the Boolean function f1

Assumption Conditions for satisfying the Assumption

ai−1[j]
ti[] ai−7 = 0
ti[j] ai−7 = 1, ai−3ai−4 ⊕ ai−2ai−6 ⊕ ai−5ai−3 ⊕ ai−5 = 0

ai−2[j]
ti[] ai−6 = 0
ti[j] ai−6 = 1, ai−3ai−4 ⊕ ai−7ai−1 ⊕ ai−5ai−3 ⊕ ai−5 = 0

ai−3[j]
ti[] ai−4 = ai−5

ti[j] ai−4 6= ai−5, ai−1ai−7 ⊕ ai−6ai−2 ⊕ ai−5 = 0

ai−4[j]
ti[] ai−3 = 0
ti[j] ai−3 = 1, ai−1ai−7 ⊕ ai−6ai−2 ⊕ ai−5ai−3 ⊕ ai−5 = 0

ai−5[j]
ti[] ai−3 = 1
ti[j] ai−3ai−4 ⊕ ai−3 = 0, ai−1ai−7 ⊕ ai−6ai−2 = 0

ai−6[j]
ti[] ai−2 = 0
ti[j] ai−2 = 1, ai−3ai−4 ⊕ ai−7ai−1 ⊕ ai−5ai−3 ⊕ ai−5 = 0

ai−7[j]
ti[] ai−1 = 0
ti[j] ai−1 = 1, ai−3ai−4 ⊕ ai−6ai−2 ⊕ ai−5ai−3 ⊕ ai−5 = 0
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Table 8. Property of the Boolean function f2

Assumption Conditions for satisfying the Assumption

ai−1[j]
ti[] ai−4ai−6 ⊕ ai−3 = 0
ti[j] ai−4ai−6 ⊕ ai−3 = 1,

ai−6ai−2ai−3 ⊕ ai−4ai−6 ⊕ ai−4ai−2

⊕ ai−6ai−5 ⊕ ai−2ai−3 ⊕ ai−7ai−6 ⊕ ai−7 = 0

ai−2[j]
ti[] ai−3ai−6 ⊕ ai−4 ⊕ ai−3 = 0
ti[j] ai−3ai−6 ⊕ ai−4 ⊕ ai−3 = 1,

ai−4ai−6ai−1 ⊕ ai−4ai−6 ⊕ ai−6ai−5 ⊕ ai−1ai−3 ⊕ ai−7ai−6 ⊕ ai−7 = 0

ai−3[j]
ti[] ai−2ai−6 ⊕ ai−1 ⊕ ai−2 = 0
ti[j] ai−2ai−6 ⊕ ai−1 ⊕ ai−2 = 1,

ai−4ai−6ai−1 ⊕ ai−4ai−6 ⊕ ai−6ai−5 ⊕ ai−7ai−6 ⊕ ai−7 = 0

ai−4[j]
ti[] ai−1ai−6 ⊕ ai−6 ⊕ ai−2 = 0
ti[j] ai−1ai−6 ⊕ ai−6 ⊕ ai−2 = 1

ai−6ai−2ai−3 ⊕ ai−6ai−5 ⊕ ai−1ai−3 ⊕ ai−2ai−3 ⊕ ai−7ai−6 ⊕ ai−7 = 0

ai−5[j]
ti[] ai−6 = 0
ti[j] ai−6 = 1,

ai−4ai−6ai−1 ⊕ ai−6ai−2ai−3 ⊕ ai−4ai−6

⊕ ai−4ai−2 ⊕ ai−1ai−3 ⊕ ai−2ai−3 ⊕ ai−7ai−6 ⊕ ai−7 = 0

ai−6[j]
ti[] ai−1ai−4 ⊕ ai−2ai−3 ⊕ ai−4 ⊕ ai−5 ⊕ ai−7 = 0
ti[j] ai−1ai−4 ⊕ ai−2ai−3 ⊕ ai−4 ⊕ ai−5 ⊕ ai−7 = 1,

ai−4ai−2 ⊕ ai−1ai−3 ⊕ ai−2ai−3 ⊕ ai−7 = 0

ai−7[j]
ti[] ai−6 = 1
ti[j] ai−6 = 0,

ai−4ai−5ai ⊕ ai−6ai−2ai−3 ⊕ ai−4ai−6

⊕ ai−4ai−2 ⊕ ai−6ai−5 ⊕ ai−1ai−3 ⊕ ai−2ai−3 = 0
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Table 9. The property of the Boolean function f3

Assumption Conditions for satisfying the Assumption

ai−1[j]
ti[] ai−4 = 1
ti[j] ai−4 = 0, ai−4ai−5ai−6 ⊕ ai−6ai−3 ⊕ ai−5ai−2 ⊕ ai−4ai−7 = 0

ai−2[j]
ti[] ai−5 = 0
ti[j] ai−5 = 1, ai−6ai−3 ⊕ ai−4ai−7 ⊕ ai−1ai−4 ⊕ ai−1 = 0

ai−3[j]
ti[] ai−6 = 0
ti[j] ai−6 = 1, ai−4ai−5ai−6 ⊕ ai−5ai−2 ⊕ ai−4ai−7 ⊕ ai−1ai−4 ⊕ ai−1 = 0

ai−4[j]
ti[] ai−5ai−6 ⊕ ai−7 ⊕ ai−1 = 0
ti[j] ai−5ai−6 ⊕ ai−7 ⊕ ai−1 = 1, ai−6ai−3 ⊕ ai−5ai−2 ⊕ ai−1 = 0

ai−5[j]
ti[] ai−4ai−6 ⊕ ai−2 = 0
ti[j] ai−4ai−6 ⊕ ai−2 = 1, ai−6ai−3 ⊕ ai−4ai−7 ⊕ ai−1ai−4 ⊕ ai−1 = 0

ai−6[j]
ti[] ai−4ai−5 ⊕ ai−3 = 0
ti[j] ai−4ai−5 ⊕ ai−3 = 1, ai−5ai−2 ⊕ ai−4ai−7 ⊕ ai−1ai−4 ⊕ ai−1 = 0

ai−7[j]
ti[] ai−4 = 0
ti[j] ai−4 = 1, ai−4ai−5ai−6 ⊕ ai−6ai−3 ⊕ ai−5ai−2 ⊕ ai−1ai−4 ⊕ ai−1 = 0


