
A (Second) Preimage Attack
on the GOST Hash Function

Florian Mendel, Norbert Pramstaller, and Christian Rechberger

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

Florian.Mendel@iaik.TUGraz.at

Abstract. In this article, we analyze the security of the GOST hash
function with respect to (second) preimage resistance. The GOST hash
function, defined in the Russian standard GOST-R 34.11-94, is an iter-
ated hash function producing a 256-bit hash value. As opposed to most
commonly used hash functions such as MD5 and SHA-1, the GOST hash
function defines, in addition to the common iterated structure, a check-
sum computed over all input message blocks. This checksum is then part
of the final hash value computation. For this hash function, we show
how to construct second preimages and preimages with a complexity of
about 2225 compression function evaluations and a memory requirement
of about 238 bytes.
First, we show how to construct a pseudo-preimage for the compression
function of GOST based on its structural properties. Second, this pseudo-
preimage attack on the compression function is extended to a (second)
preimage attack on the GOST hash function. The extension is possible
by combining a multicollision attack and a meet-in-the-middle attack on
the checksum.

Keywords: cryptanalysis, hash functions, preimage attack

1 Introduction

A cryptographic hash function H maps a message M of arbitrary length to
a fixed-length hash value h. A cryptographic hash function has to fulfill the
following security requirements:

– Collision resistance: it is practically infeasible to find two messages M and
M∗, with M∗ 6= M , such that H(M) = H(M∗).

– Second preimage resistance: for a given messageM , it is practically infeasible
to find a second message M∗ 6= M such that H(M) = H(M∗).

– Preimage resistance: for a given hash value h, it is practically infeasible to
find a message M such that H(M) = h.

The resistance of a hash function to collision and (second) preimage attacks
depends in the first place on the length n of the hash value. Regardless of how a
hash function is designed, an adversary will always be able to find preimages or

second preimages after trying out about 2n different messages. Finding collisions
requires a much smaller number of trials: about 2n/2 due to the birthday paradox.
If the internal structure of a particular hash function allows collisions or (second)
preimages to be found more efficiently than what could be expected based on
its hash length, then the function is considered to be broken.

Recent cryptanalytic results on hash functions mainly focus on collision at-
tacks (see for instance [2, 3, 14–17]) but only few results with respect to (second)
preimages have been published to date (see for instance [7, 9]). In this article, we
will present a security analysis with respect to (second) preimage resistance for
the hash function specified in the Russian national standard GOST-R 34.11-94.
This standard has been developed by GUBS of Federal Agency Government
Communication and Information and All-Russian Scientific and Research Insti-
tute of Standardization. The standard also specifies amongst others the GOST
block cipher and the GOST signature algorithm.

The GOST hash function is an iterated hash function producing a 256-bit
hash value. Since the GOST block cipher is a building block of the hash function,
it can be considered as a block-cipher-based hash function. While there have
been published several cryptanalytic results regarding the block cipher (see for
instance [1, 6, 8, 12, 13]), we are not aware of any published security analysis of
the GOST hash function besides the work of Gauravaram and Kelsey in [4].
They show that the generic attacks on hash functions based on the Damg̊ard-
Merkle design principle can be extended to hash functions with linear/modular
checksums independent of the underlying compression function.

In this article, we present an analysis of the GOST hash function. To denote
the GOST hash function, we will simply write GOST for the remainder of this
article. We exploit the internal structure of GOST to construct pseudo-preimages
for the compression function of GOST with a complexity of about 2192. Further-
more, we show how this attack on the compression function of GOST can be
extended to a (second) preimage attack on the hash function. The attack has a
complexity of about 2225 instead of 2256 what is expected from a 256-bit hash
value. Both attacks are structural attacks in the sense that they are independent
of the underlying block cipher.

The remainder of this article is structured as follows. In Section 2, we give a
short description of GOST. Section 3 presents the pseudo-preimage attack on the
compression function. The extension of the attack on the compression function
resulting in the preimage attack is discussed in Section 4. Finally, we present
conclusions in Section 5.

2 Description of GOST

GOST is an iterated hash function that processes message blocks of 256 bits and
produces a 256-bit hash value. If the message length is not a multiple of 256,
an unambiguous padding method is applied. For the description of the padding
method we refer to [10]. Let M = M1‖M2‖ · · · ‖Mt be a t-block message (after

tm

258257256

f f f f

1

256
f

256 257

256

256

1

STEP 1 STEP 2STEP 3

f f f f

1

256
f

2 t

256

256

STEP 4

Fig. 1. Structure of the GOST hash function.

padding). The hash value h = H(M) is computed as follows (see Fig. 1):

H0 = IV (1)
Hi = f(Hi−1,Mi) for 0 < i ≤ t (2)

Ht+1 = f(Ht, |M |) (3)
Ht+2 = f(ht+1, Σ) = h , (4)

where Σ = M1 �M2 � · · · �Mt, and � denotes addition modulo 2256. IV is a
predefined initial value and |M | represents the bit-length of the entire message
prior to padding. As can be seen in (4), GOST specifies a checksum (Σ) con-
sisting of the modular addition of all message blocks, which is then input to the
final application of the compression function. Computing this checksum is not
part of most commonly used hash functions such as MD5 and SHA-1.

The compression function f of GOST basically consist of three parts (see
also Fig. 2): the state update transformation, the key generation, and the output
transformation. In the following, we will describe these parts in more detail.

state update
transformation
(encryption)

output
transformation

Mi

Hi-1

Hi

ke
y

ge
ne

ra
tio

n

S

K

10
24

256

256

256

256

Fig. 2. The compression function of GOST

2.1 State Update Transformation

The state update transformation of GOST consists of 4 parallel instances of the
GOST block cipher, denoted by E. The intermediate hash value Hi−1 is split
into four 64-bit words h3‖h2‖h1‖h0. Each 64-bit word is used in one stream of
the state update transformation to construct the 256-bit value S = s3‖s2‖s1‖s0
in the following way:

s0 = E(k0, h0) (5)
s1 = E(k1, h1) (6)
s2 = E(k2, h2) (7)
s3 = E(k3, h3) (8)

where E(k, p) denotes the encryption of the 64-bit plaintext p under the 256-bit
key k. We refer to the GOST standard, for a detailed description of the GOST
block cipher.

2.2 Key Generation

The key generation of GOST takes as input the intermediate hash value Hi−1

and the message block Mi to compute a 1024-bit key K. This key is split into
four 256-bit keys ki, i.e. K = k3‖ · · · ‖k0, where each key ki is used in one stream
as the key for the GOST block cipher E in the state update transformation. The
four keys k0, k1, k2, and k3 are computed in the following way:

k0 = P (Hi−1 ⊕Mi) (9)
k1 = P (A(Hi−1)⊕A2(Mi)) (10)
k2 = P (A2(Hi−1)⊕ Const⊕A4(Mi)) (11)
k3 = P (A(A2(Hi−1)⊕ Const)⊕A6(Mi)) (12)

where A and P are linear transformations and Const is a constant. Note that
A2(x) = A(A(x)). For the definition of the linear transformation A and P as
well as the value of Const, we refer to [10], since we do not need them for our
analysis.

2.3 Output Transformation

The output transformation of GOST combines the initial value Hi−1, the mes-
sage block Mi, and the output of the state update transformation S to compute
the output value Hi of the compression function. It is defined as follows.

Hi = ψ61(Hi−1 ⊕ ψ(Mi ⊕ ψ12(S))) (13)

The linear transformation ψ : {0, 1}256 → {0, 1}256 is given by:

ψ(Γ) = (γ0 ⊕ γ1 ⊕ γ2 ⊕ γ3 ⊕ γ12 ⊕ γ15)‖γ15‖γ14‖ · · · ‖γ1 (14)

where Γ is split into sixteen 16-bit words, i.e. Γ = γ15‖γ14‖ · · · ‖γ0.

3 Constructing Pseudo-Preimages for the Compression
Function of GOST

In this section, we present how to construct a pseudo-preimage for the com-
pression function of GOST. The attack is based on structural weaknesses of the
compression function. Since the transformation ψ is linear, (13) can be written
as:

Hi = ψ61(Hi−1)⊕ ψ62(Mi)⊕ ψ74(S) (15)

Furthermore, ψ is invertible and hence (15) can be written as:

ψ−74(Hi)︸ ︷︷ ︸
X

= ψ−13(Hi−1)︸ ︷︷ ︸
Y

⊕ψ−12(Mi)︸ ︷︷ ︸
Z

⊕S (16)

Note that Y depends linearly on Hi−1 and Z depends linearly on Mi. As opposed
to Y and Z, S depends on both Hi−1 and Mi processed by the block cipher E.
For the following discussion, we split the 256-bit words X,Y, Z defined in (16)
into 64-bit words:

X = x3‖x2‖x1‖x0 Y = y3‖y2‖y1‖y0 Z = z3‖z2‖z1‖z0

Now, (16) can be written as:

x0 = y0 ⊕ z0 ⊕ s0 (17)
x1 = y1 ⊕ z1 ⊕ s1 (18)
x2 = y2 ⊕ z2 ⊕ s2 (19)
x3 = y3 ⊕ z3 ⊕ s3 (20)

For a given Hi, we can easily compute the value X = ψ−74(Hi). Now assume,
that for the given X = x0‖x1‖x2‖x3, we can find two pairs (H1

i−1,M
1
i) and

(H2
i−1,M

2
i), where H1

i−1 6= H2
i−1 or M1

i 6= M2
i , such that both pairs produce

the value x0. Then we know that with a probability of 2−192, these two pairs
also lead to the corresponding values x1, x2, and x3. In other words, we have
constructed a pseudo-preimage for the given Hi for the compression function of
GOST with a probability of 2−192. Therefore, assuming that we can construct
2192 pairs (Hj

i−1,M
j
i), where Hj

i−1 6= Hk
i−1 or M j

i 6= Mk
i , such that all produce

the value x0, then we have constructed a pseudo-preimage for the compression
function.

Based on this short description, we will show now how to construct pseudo-
preimages for the compression function of GOST. We will first derive how to
construct pairs (Hj

i−1,M
j
i), which all produce the same value x0. This boils

down to solving an underdetermined system of equations. Assume, we want to
keep the value s0 in (17) constant. Since s0 = E(k0, h0), we have to find pairs
(Hj

i−1,M
j
i) such that the values k0 and h0 are the same for each pair. We know

that h0 directly depends on Hi−1. The key k0 depends on Hi−1⊕Mi. Therefore,

we get the following equations:

h0 = a (21)
m0 ⊕ h0 = b0 (22)
m1 ⊕ h1 = b1 (23)
m2 ⊕ h2 = b2 (24)
m3 ⊕ h3 = b3 (25)

where a and the bi’s are arbitrary 64-bit values. Note that k0 = P (Hi−1⊕Mi) =
B̄, where B̄ = P (B) and B = b3‖ · · · ‖b0, see (9). This is an underdetermined
system of equations with 5 · 64 equations in 8 · 64 variables over GF (2). Solving
this system leads to 2192 solutions for which s0 has the same value. To find pairs
(Hj

i−1,M
j
i) for which x0 has the same value, we still have to ensure that also the

term y0 ⊕ z0 in (17) has the same value for all pairs. This adds one additional
equation (64 equations over GF (2)) to our system of equations, namely

y0 ⊕ z0 = c (26)

where c is an arbitrary 64-bit value. This equation does not add any new vari-
ables, since we know that y0 depends linearly on h3‖h2‖h1‖h0 and z0 depends
linearly on m3‖m2‖m1‖m0, see (16). To summarize, fixing the value of x0 boils
down to solving an underdetermined equation system with 6 · 64 equations and
8 ·64 unknowns over GF (2). This leads to 2128 solutions hi and mi for 0 ≤ i < 4
and hence 2128 pairs (Hj

i−1,M
j
i) for which the value x0 is the same.

Now we can describe how the pseudo-preimage attack on the compression
function of GOST works. In the attack, we have to find Hi−1 and Mi such that
f(Hi−1,Mi) = Hi for a given value of Hi. The attack can be summarized as
follows.

1. Choose random values for b0, b1, b2, b3 and a. This determines k0 and h0

2. Compute s0 = E(k0, h0) and adjust c accordingly such that

x0 = y0 ⊕ z0 ⊕ s0 = c⊕ s0

holds with X = ψ−74(Hi).
3. Solve the set of 6 · 64 linear equations over GF (2) to obtain 2128 pairs

(Hj
i−1,M

j
i) for which x0 is correct.

4. For each pair compute X and check if x3, x2 and x1 are correct. This holds
with a probability of 2−192. Thus, after testing all 2128 pairs, we will find a
correct pair with a probability of 2−192 · 2128 = 2−64. Therefore, we have to
repeat the attack about 264 times for different choices of b0, b1, b2, b3 and a
to find a pseudo-preimage for the compression function of GOST.

Hence, we can construct a pseudo-preimage for the compression function of
GOST with a complexity of about 2192 instead of 2256 as expected for a com-
pression function with an output size of 256 bits. In the next section, we will
show how this attack on the compression function can be extended to a preimage
attack on the hash function.

4 A Preimage Attack for the Hash Function

In a preimage attack, we want to find, for a given hash value h, a messageM such
that H(M) = h. As we will show in the following, for GOST we can construct
preimages of h with a complexity of about 2225 evaluations of the compression
function of GOST. Furthermore, the preimage consists of 257 message blocks,
i.e. M = M1‖ · · · ‖M257. The preimage attack consists basically of four steps as
also shown in Figure 3.

tm

258257256

f f f f

1

256
f

256 257

256

256

1

STEP 1 STEP 2STEP 3

f f f f

1

256
f

2 t

256

256

STEP 4

Fig. 3. Preimage Attack on GOST.

4.1 STEP 1: Multicollisions for GOST

In [5], Joux introduced multicollisions which can be constructed for any iterated
hash function. A multicollision is a set of messages of equal length that all lead
to the same hash value. As shown by Joux, constructing a 2t multicollision,
i.e. 2t messages consisting of t message blocks which all lead to the same hash
value, can be done with a complexity of about t · 2n/2, where n is the bit-
size of the hash value. For the preimage attack on GOST, we construct a 2256

multicollision. This means, we have 2256 messages M∗ = M j1
1 ‖M j2

2 ‖ · · · ‖M j256
256

for j1, j2, . . . , j256 ∈ {1, 2} consisting of 256 blocks that all lead to the same hash
value H256. This results in a complexity of about 256 · 2128 = 2136 evaluations
of the compression function of GOST. Furthermore, the memory requirement
is about 2 · 256 message blocks, i.e. we need to store 214 bytes. With these
multicollisions, we are able to construct the needed value of Σm in STEP 4 of
the attack (where the superscript m stands for ‘multicollision’).

4.2 STEP 2: Pseudo-Preimages for the Last Iteration

We construct 232 pseudo-preimages for the last iteration of GOST. For the given
h, we proceed as described in Section 3 to construct a list L that consists of 232

pairs (H258, Σ
t) (where the superscript t stands for ‘target’). Constructing the

list L has a complexity of about 232 · 2192 = 2224 evaluations of the compression
function of GOST. The memory requirements in this step come from the storage
of 232 pairs (Hi−1,Mi), i.e. we need to store 232 512-bit values or 238 bytes.

4.3 STEP 3: Preimages Including the Length Encoding

In this step, we have to find a message block M257 such that for the given H256

determined in STEP 1, and for |M | determined by our assumption that we want
to construct preimages consisting of 257 message blocks, we find a H258 that is
also contained in the list L constructed in STEP 2. Note that since we want to
construct a message that is a multiple of 256 bits, we choose M257 to be a full
message block and hence no padding is needed. We proceed as follows. Choose
an arbitrary message block M257 and compute H258 as follows:

H257 = f(H256,M257)
H258 = f(H257, |M |)

where |M | = (256 + 1) · 256. Then we check if the resulting value H258 is also
in the list L. Since there are 232 entries in L, we will find the right M257 with
a probability of 2−256 · 232 = 2−224. Hence, after repeating this step of the
attack about 2224 times, we will find an M257 and an according H258 that is also
contained in the list L. Hence, this step of the attack requires 2225 evaluations
of the compression function. Once we have found an appropriate M257, also the
value Σm is determined: Σm = Σt �M257.

4.4 STEP 4: Constructing Σm

In STEP 1, we constructed a 2256 multicollision in the first 256 iterations of the
hash function. From this set of messages that all lead to the same H256, we now
have to find a message M∗ = M j1

1 ‖M j2
2 ‖ · · · ‖M j256

256 for j1, j2, . . . , j256 ∈ {1, 2}
that leads to the value of Σm = Σt � M257. This can easily done by applying
a meet-in-the-middle attack. First, we save all values for Σ1 = M j1

1 � M j2
2 �

· · ·�M j128
128 in the list L. Note that we have in total 2128 values in L. Second, we

compute Σ2 = M j129
129 �M j130

130 � · · ·�M j256
256 and check if Σm �Σ2 is in the list L.

After testing all 2128 values, we expect to find a matching entry in the list L and
hence a message M∗ = M j1

1 ‖M j2
2 ‖ · · · ‖M j256

256 that leads to Σm = Σt � M257.
This step of the attack has a complexity of 2128 and a memory requirement of
2128 · 25 = 2133 bytes. Once we have found M∗, we found a preimage for GOST
consisting of 256+1 message blocks, namely M∗‖M257.

The complexity of the preimage attack is determined by the computational
effort of STEP 2 and STEP 3, i.e. a preimage of h can be found in about 2225 +
2224 ≈ 2225 evaluations of the compression function. The memory requirements
for the preimage attack are determined by finding M∗ in STEP 4, since we need
to store 2133 bytes for the standard meet-in-the-middle attack. Due to the high
memory requirements of STEP 4, one could see this part as the bottleneck of
the attack. However, the memory requirements of STEP 4 can be significantly
reduced by applying a memory-less variant of the meet-in-the-middle attack
introduced by Quisquater and Delescaille in [11].

4.5 A Remark on Second Preimages

Note that the presented preimage attack on GOST also implies a second preim-
age attack. In this case, we are not given only the hash value h but also a message
M that results in this hash value. We can construct for any given message a sec-
ond preimage in the same way as we construct preimages. The difference is, that
the second preimage will always consist of at least 257 message blocks. Thus, we
can construct a second preimage for any message M (of arbitrary length) with
a complexity of about 2225 evaluations of the compression function of GOST.

Note that for long messages (more than 232 message blocks) the generic
second preimage attack of Gauravaram and Kelsey [4] is more efficient. For
instance, a second preimage can be found for a message consisting of about 254

message blocks with a complexity of 2203 evaluations of the compression function
of GOST and 2142 bytes of memory.

5 Conclusion

In this article, we have presented a (second) preimage attack on GOST. Both
the preimage and the second preimage attack have a complexity of about 2225

evaluations of the compression function and a memory requirement of about 238

bytes. The internal structure of the compression function allows to construct
pseudo-preimages with a complexity of about 2192. This alone would not render
the hash function insecure but would actually just constitute a certificational
weakness. Nevertheless, the fact that we can construct multicollisions for any
iterated hash function including GOST and the possibility of applying a meet-
in-the-middle attack make the preimage and second preimage attack on GOST
possible. More precisely, as opposed to most iterated hash functions, GOST ad-
ditionally computes a checksum of the single message blocks which is then input
to the final application of the compression function. For the preimage attack, we
need a certain value in this chain after 256 iterations. The multicollision attack
allows to generate a huge set of colliding messages such that we can generate
any value for this checksum. Furthermore, a memory-less variant of meet-in-the-
middle attack enables us to construct the specific value in an efficient way with
respect to both running time and memory requirements.

Acknowledgements

The authors wish to thank Praveen Gauravaram, Mario Lamberger, Vincent
Rijmen, and the anonymous referees for useful comments and discussions.

The work in this paper has been supported in part by the Austrian Science
Fund (FWF), project P19863 and by the European Commission through the
IST Programme under contract IST2002507 932 ECRYPT. The information in
this paper is provided as is, and no guarantee or warranty is given or implied
that the information is fit for any particular purpose. The user thereof uses the
information at its sole risk and liability.

References

1. Alex Biryukov and David Wagner. Advanced Slide Attacks. In Bart Preneel,
editor, EUROCRYPT, volume 1807 of LNCS, pages 589–606. Springer, 2000.

2. John Black, Martin Cochran, and Trevor Highland. A Study of the MD5 Attacks:
Insights and Improvements. In Matthew J. B. Robshaw, editor, FSE, volume 4047
of LNCS, pages 262–277. Springer, 2006.

3. Christophe De Cannière and Christian Rechberger. Finding SHA-1 Characteris-
tics: General Results and Applications. In Xuejia Lai and Kefei Chen, editors,
ASIACRYPT, volume 4284 of LNCS, pages 1–20. Springer, 2006.

4. Praveen Gauravaram and John Kelsey. Cryptanalysis of a Class of Crypto-
graphic Hash Functions. Accepted at CT-RSA, 2008. Preprint available at
http://eprint.iacr.org/2007/277.

5. Antoine Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded
Constructions. In Matthew K. Franklin, editor, CRYPTO, volume 3152 of LNCS,
pages 306–316. Springer, 2004.

6. John Kelsey, Bruce Schneier, and David Wagner. Key-Schedule Cryptoanaly-
sis of IDEA, G-DES, GOST, SAFER, and Triple-DES. In Neal Koblitz, editor,
CRYPTO, volume 1109 of LNCS, pages 237–251. Springer, 1996.

7. Lars R. Knudsen and John Erik Mathiassen. Preimage and Collision Attacks on
MD2. In Henri Gilbert and Helena Handschuh, editors, FSE, volume 3557 of LNCS,
pages 255–267. Springer, 2005.

8. Youngdai Ko, Seokhie Hong, Wonil Lee, Sangjin Lee, and Ju-Sung Kang. Related
Key Differential Attacks on 27 Rounds of XTEA and Full-Round GOST. In Bi-
mal K. Roy and Willi Meier, editors, FSE, volume 3017 of LNCS, pages 299–316.
Springer, 2004.

9. Mario Lamberger, Norbert Pramstaller, Christian Rechberger, and Vincent Rij-
men. Second Preimages for SMASH. In Masayuki Abe, editor, CT-RSA, volume
4377 of LNCS, pages 101–111. Springer, 2007.

10. Markus Michels, David Naccache, and Holger Petersen. GOST 34.10 - A brief
overview of Russia’s DSA. Computers & Security, 15(8):725–732, 1996.

11. Jean-Jacques Quisquater and Jean-Paul Delescaille. How Easy is Collision Search.
New Results and Applications to DES. In Gilles Brassard, editor, CRYPTO, vol-
ume 435 of LNCS, pages 408–413. Springer, 1989.

12. Markku-Juhani O. Saarinen. A chosen key attack against the secret S-boxes of
GOST, 1998. Available at http://citeseer.ist.psu.edu/saarinen98chosen.html.

13. Haruki Seki and Toshinobu Kaneko. Differential Cryptanalysis of Reduced Rounds
of GOST. In Douglas R. Stinson and Stafford E. Tavares, editors, Selected Areas
in Cryptography, volume 2012 of LNCS, pages 315–323. Springer, 2000.

14. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis of the Hash Functions MD4 and RIPEMD. In Ronald Cramer, editor,
EUROCRYPT, volume 3494 of LNCS, pages 1–18. Springer, 2005.

15. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full
SHA-1. In Victor Shoup, editor, CRYPTO, volume 3621 of LNCS, pages 17–36.
Springer, 2005.

16. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions.
In Ronald Cramer, editor, EUROCRYPT, volume 3494 of LNCS, pages 19–35.
Springer, 2005.

17. Hongbo Yu, Xiaoyun Wang, Aaram Yun, and Sangwoo Park. Cryptanalysis of the
Full HAVAL with 4 and 5 Passes. In Matthew J. B. Robshaw, editor, FSE, volume
4047 of LNCS, pages 89–110. Springer, 2006.

A A Pseudo-Collision for the Compression Function

In a similar way as we have constructed a pseudo-preimage in Section 3, we
can construct a pseudo-collision for the compression function of GOST. In the
attack, we have to find two pairs (H1

i−1,M
1
i) and (H2

i−1,M
2
i), where H1

i−1 6=
H2

i−1 or M1
i 6= M2

i , such that f(H1
i−1,M

1
i) = f(H2

i−1,M
2
i). The attack can be

summarized as follows.

1. Choose random values for a, b0, b1, b2, b3 and c. This determines x0.
2. Solve the set of 6 · 64 linear equations over GF (2) to obtain 2128 pairs

(Hj
i−1,M

j
i) for which x0 in (17) is equal.

3. For each pair computeX = x3‖x2‖x1‖x0 and save the the triple (X,Hj
i−1,M

j
i)

in the list L. Note that x0 is equal for all entries in the list L.
After computing at most 296 candidates for X one expect to find a matching
entry (a collision) in L. Note that a collision is likely to exist due to the
birthday paradox. Once, we have found a matching entry for X in the list L,
we have also found a pseudo-collision for the compression function of GOST,
since Hi = ψ74(X), see (16).

Note that memory-less variants of this attack can be devised [11]. Hence, we have
a pseudo-collision for the compression function of GOST with a complexity of
about 296 instead of 2128 as expected for a compression function with an output
size of 256 bits.

