
Entropy of the Internal State of an FCSR in
Galois Representation

Andrea Röck

Team SECRET, INRIA Paris-Rocquencourt, France
http://www-rocq.inria.fr/secret/

andrea.roeck@inria.fr

Abstract. Feedback with Carry Shift Registers (FCSRs) are primitives
that are used in multiple areas like cryptography or generation of pseu-
dorandom sequences. In both cases, we do not want that an attacker can
easily guess the content of the register. This requires a high entropy of
the inner state. We consider the case of a binary FCSR in Galois repre-
sentation. In this article, we show that we already lose after one iteration
a lot of entropy. The entropy reduces until the moment where the FCSR
reaches a periodic behavior. We present an algorithm which computes
the final entropy of an FCSR and which also allows us to show that the
entropy never decreases under the size of the main register.

1 Introduction

FCSRs are finite state machines which were independently introduced by Goresky
and Klapper [KG93,KG97], Marsaglia and Zamand [MZ91], and Couture and
L’Ecuyer [CL94]. They are similar to Linear Feedback Shift Registers (LFSRs).
However, they use an additional register to store the carry information and their
transition function is non linear, more precisely quadratic [AB05b]. Goresky and
Klapper [GK02] distinguish between FCSRs in Fibonacci and Galois represen-
tation. In this article, we consider binary FCSRs in Galois architecture.

An application of FCSRs is cryptography, as for example the stream cipher
presented by Arnaut and Berger in [AB05b]. In this area, the entropy is an
important parameter. It represents the minimal number of binary questions an
attacker has to ask on average to obtain an unknown value. Therefore, we are
always interested in a high entropy. In the following, we study the entropy of
the inner state of an FCSR. First we give some notations. Subsequently, we
will present the structure of an FCSR in the Galois representation and explain
exactly the meaning of the state entropy. In the end, we give an overview of this
article.

1.1 Notations

In this article, we are going to use the following notations to describe the behavior
of an FCSR.

n: Let n denote the size of the main register M in bits.
m: We mean by m the 2-adic description of the current state of M : m =∑n−1

i=0 mi 2i, where m0, . . . , mn−1 are the bits in M . Thus, 0 ≤ m < 2n.
d: Let d be an integer with 2n−1 ≤ d < 2n. We will use it to determine at which

positions we have a feedback with carry. We mean by di the i’th bit of the
binary representation of d. We define di = 0 for all i < 0.

Id = {0 ≤ i ≤ n− 2|di = 1}: The set Id contains all feedback positions.
d∗ = d− 2n−1.
` = wt(d∗): We denote with ` the number of feedback branches, where wt(d∗)

means the hamming weight of d∗, i.e. the number of 1’s in its binary repre-
sentation.

c =
∑

i∈Id
ci 2i: The value c is the 2-adic description of the carry bits.

(m(t), c(t)): The pair (m(t), c(t)) represents the actual value of the state after
t iterations.

q = 1−2d: We denote by q the divisor in the 2-adic description of the produced
bit string. It holds that q < 0.

p = m + 2c: The value p represents the corresponding dividend which can be
in the range of 0 ≤ p ≤ |q|.

s: Let s is the binary representation of the output sequence of the generator.
H(1): Let H(1) denote the entropy of the state after one iteration.
Hf : As soon as the FCSR obtains a periodic behavior, the state entropy does

not change any more. We denote this final entropy by Hf .

Furthermore, we need two special sums in our calculations:

S1(k) =
2k∑

x=2k−1+1

x log2(x),

S2(k) =
2k−1∑
x=1

x log2(x).

1.2 FCSR in Galois

A binary FCSR in Galois representation is built like a LFSR with a main register
and several feedback branches. However, in the case of the FCSRs we have an
additional carry bit at each feedback position. An example for such an FCSR is
presented in Fig. 1.

To change the state from (m(t), c(t)) to (m(t + 1), c(t + 1)), we use the
following equations:

mn−1(t + 1) = m0(t), (1)
i ∈ Id : mi(t + 1) = (m0(t) + ci(t) + mi+1(t)) mod 2, (2)

ci(t + 1) = (m0(t) + ci(t) + mi+1(t))÷ 2, (3)
i 6∈ Id : mi(t + 1) = mi+1(t), (4)

0c(t)

m(t) mn−1 mn−2 mn−3 m1 m0 st

c0cn−3

1 0 1 1d

Fig. 1. Model of an FCSR.

where x ÷ 2 means the integer division bx/2c. The bit m0(t) is directly shifted
to position mn−1(t + 1). In the cases without a feedback, i.e. i 6∈ Id, the bit gets
simply shifted one position to the left. Otherwise, we add the bit in the main
register at position i + 1 with the carry bit and the bit from position 0. This
sum modulo 2 is put into the main register. The value of the sum divided by
2 is given back to the carry bit. The equations (2) and (3) can also be written
together as:

mi(t + 1) + 2ci(t + 1) = m0(t) + ci(t) + mi+1(t). (5)

Remark 1. The + in all these equations represents the normal integer addition
(and not an addition modulo 2) even if we are only using bit values for mi(t)
and ci(t).

The output sequence of the FCSR can be easily described by means of the
feedback positions (determined by d) and the initial state (m, c). Let q and p be
defined as q = 1− 2d and p = m+2c. This means that q < 0 and 0 ≤ p ≤ |q|. In
this case, the output sequence of the FCSR is s = p

q [GK02]. Another property
shown in [AB05a] is: Let (m(t+1), c(t+1)) be the state produced by (m(t), c(t))
after one iteration. Let p(t) = m(t) + 2c(t) and p(t + 1) = m(t + 1) + 2c(t + 1)
be the corresponding values of p. Then it holds that:

2p(t + 1) = p(t) (mod q). (6)

where all bits are 0 or 1 respectively.
We can use the following property of an FCSR to determine the period of a

sequence: if q is odd, p and q are coprime and s = p/q then the period of s is the
order of 2 modulo q, this means the smallest t such that 2t = 1 (mod q). If p
and q are not coprime, we divide them both by their greatest common divisor. It
is easy to see that the maximal period is |q| − 1. There are always two fix points
(0, 0) and (2n − 1, d∗) with an period of length 1, which represents the cases
where all bits are respectively 0 or 1. It is known [GK02] that if 2 is primitive
modulo q, which means it has order |q|−1, then all the other periodic states are
obtained by the state (1, 0) by iterating the FCSR. Since q is odd, this implies
that, except for the two fix points, we have an FCSR with one single cycle of
maximal length |q| − 1. Such a sequence is called `–sequence.

1.3 State Entropy

For any discrete probability distribution P = {p1, . . . , pZ}, Shannon’s entropy
is defined by:

H =
Z∑

j=1

pj log2

(
1
pj

)
. (7)

If pj = 0, we use the classical convention in the computation of the entropy:
0 log2(

1
0) = 0. This can be done, since a zero probability has no influence in the

computation of the entropy. The state of our FCSR consists of n+ ` bits. Let us
assume that each initial state is chosen with the same probability p(m(0),c(0)) =
2−n−`. Then by using (7) we know that the initial entropy is n + ` bits.

Let us consider the update function of an FCSR. It consists of trees of dif-
ferent length, where each root of a tree is a node in a cycle. This is the same
for any finite function which is not a permutation. An example of such a graph
can be found in Fig. 2. Each node in the graph represents a possible state of

(4,1)

(2,2)

(6,0)

(6,3)

(0,3)

(7,2)(5,2)

(3,0)(6,1)

(1,2)(4,3)

(2,1)(0,1)

(7,0)

(1,0)

(7,3)

(0,0) (2,0)

(0,2)

(4,0)

(4,2)

(2,3)

(1,1)

(5,3)

(3,3)

(7,1)

(3,1)

(5,0)

(6,2)

(1,3)

(3,2)

(5,1)

Fig. 2. Functional graph of the FCSR with n = 3 and q = −13.

the FCSR and each arrow represents an update from one state to another. Each
time when a state is produced by more than one state, the number of possible
states, and therefore the entropy of the state, reduces. As soon as we reached a
point on the cycle from any possible starting points, the FCSR behaves like a
permutation and the entropy stays constant. We will denote this value by the
final entropy Hf .

We need the probability of each state to compute the entropy after some
iterations of the update function. If a state is produced by exactly r other states
after k iterations, then its probability is r 2−n−`. Using this probability, we can
compute the entropy applying (7).

Remark 2. We consider the case where all the 2n+` different values for the initial
state can be chosen, like in the first version of the F-FCSR-8 [ABL05]. This is

not always the case, e.g. for later versions of the F-FCSR [ABL06], the carry
bits of the initial value are always set to 0. This implies that at the beginning
this stream cipher has only n bits of entropy, however, it will not lose any more
entropy, as we will see later.

1.4 Outline

In Section 2, we compute the state entropy after 1 iteration. Subsequently, in
Section 3, we present an algorithm which computes the final entropy for any
arbitrary FCSR. This algorithm uses some sums which gets difficult to compute
for large `. However, we give a method to compute very close upper and lower
bounds of the entropy. The same algorithm is used in Section 4 to prove that
the final entropy is always larger than n. We conclude the article in Section 5.

2 Entropy after one Iteration

If the initial value of the state is chosen uniformly, we have an initial state
entropy of n + ` bits. We are interested in how many bits of entropy we already
lose after one iteration.

Let us take an arbitrary initial state (m(0), c(0)) which produces the state
(m(1), c(1)) after one iteration. To compute the probability of (m(1), c(1)), we
want to know by how many other initial states (m′(0), c′(0)) 6= (m(0), c(0)) it
is produced. From (1), we see that for such an initial state m′

0(0) = mn−1(1) =
m0(0) is fixed. In the same way, we see from (4) that for all i 6∈ Id the values
m′

i+1(0) = mi(1) = mi+1(0) are already determined. By using (5) and the
previous remarks, we can write for i ∈ Id:

mi(1) + 2ci(1) = m0(0) + c′i(0) + m′
i+1(0)

mi(1) + 2ci(1) = m0(0) + ci(0) + mi+1(0)

and thus,

c′i(0) + m′
i+1(0) = ci(0) + mi+1(0).

If mi+1(0) = ci(0) it must hold that mi+1(0) = c′i(0) = m′
i+1(0) since each value

can only be either 0 or 1. Therefore, the only possibility for (m′(0), c′(0)) to
differ from (m(0), c(0)) is that there is a position i ∈ Id with mi+1(0) 6= ci(0).

Let j be the number of positions in the initial state where i ∈ Id and ci(0) +
mi+1(0) = 1. Then, there are exactly 2j − 1 other initial states which produce
the same state after one iteration. Thus, (m(1), c(1)) has a probability of 2j

2n+` .
We look now how many states (m(1), c(1)) have this probability. Such a state
must be created by an initial state (m(0), c(0)) which has j positions i ∈ Id with
ci(0) + mi+1(0) = 1. There are

(
`
j

)
possibilities to choose these positions. At the

remaining ` − j positions with i ∈ Id, we have mi+1(0) = ci(0) ∈ {0, 1}. In the
same way, we can choose between 0 and 1 for the remaining n−` positions. There

exists exactly 2n−j
(

`
j

)
different states (m(1), c(1)) with a probability of 2j−n−`.

Using (7),
∑`

j=0

(
`
j

)
= 2` and

∑`
j=0 j

(
`
j

)
= `2`−1 we can write the entropy after

one iterations as:

H(1) =
∑̀

j=0

2n−j

(
`

j

)
2j−n−`(n + `− j)

= n +
`

2
.

We have shown that the entropy after one iteration is:

H(1) = n +
`

2
(8)

which is already `/2 bits smaller than the initial entropy.

3 Final State Entropy

We have shown that after one iteration the entropy has already decreased by
`/2 bits. We are now interested in down to which value the entropy decreases
after several iterations, i.e. the final entropy Hf . For the computation of Hf ,
we need to know how many initial states arrive at the same cycle point after the
same number of iterations. We are going to use the following proposition.

Proposition 1. [ABM08, Prop. 5] Two states (m, c) and (m′, c′) are equivalent,
i.e. m + 2c = m′ + 2c′ = p, if and only if they eventually converge to the same
state after the same number of iterations.

Let us assume that we have iterated the FSCR sufficiently many times that we
are on the cycle of the functional graph. In this case, we do not have any more
collisions. If a state in the cycle is reached by x other states, it has a probability
of x/2n+`. After one iteration, all probabilities shift one position in the direction
of the cycle, which corresponds to a permutation of the probabilities. However,
the definition of the entropy is invariant to such a permutation. Let v(p) denote
the number of states which produce the same p. From Proposition 1, we know
that we find a corresponding state in the cycle, which is reached by v(p) states
and has a probability of v(p)/2n+`. We can write the final entropy by means of
equation (7):

Hf =
|q|∑

p=0

v(p)
2n+`

log2

(
2n+`

v(p)

)
. (9)

Remark 3. Let us have a look at an FCSR as mentioned in Remark 2, which
always sets c(0) = 0. For each 0 ≤ p < 2n there is only one possibility to form
p = m. This means that there are no collision and the final entropy is the same
as the initial entropy, namely n bits.

The numerator p can take any value between 0 and 2n − 1 + 2(d− 2n−1) =
2d − 1 = |q|. We look at the binary representations of m, 2c and p to find all
possible pairs (m, c) which correspond to a given p. We study bit per bit which
values are possible. This idea is presented in Fig. 3, where each box represents a

1

2c

m

p

n 0

+

Fig. 3. Evaluation of p = m + 2c bit per bit.

possible position of a bit. We mean by 2c the carry bits of the value c all shifted
one position to the left.

Remark 4. Due to this shift, we will normally consider the index i−1 for d or c.

3.1 Notations

Before continuing we give some additional notations:

ca(j) = mj + cj−1 + ca(j − 1) (mod 2): In the following, we consider only the
addition m+2c, thus, if we talk of a carry we mean the carry of this integer
addition. We mean by ca(j) the carry which is produced by adding the bits
mj , cj−1 and the carry of the previous position. E.g. if we have m = 13 and
c = 2 we have ca(1) = 0 and ca(2) = ca(3) = 1. The value ca(0) is always 0
since we only have m0 for the sum.

i := blog2(p)c: For 1 ≤ p ≤ |q|, let i be the index of the most significant bit in
p which is not equal to 0.

`′ = #{j ≤ i|dj−1 = 1}: We define by `′ the number of indices smaller or equal
to i for which dj−1 = 1.

r(p) = max{j < i|dj−1 = 0, pj = 1}: For a given p, let r(p) be the highest index
smaller than i such that dj−1 = 0 and pj = 1. In this case, the carry of the
integer addition m + 2c cannot be forwarded over the index r(p). If there is
no index j with dj−1 = 0 and pj = 1, we set r(p) = −1. For the case i < n
and di−1 = 0, we get a range of −1 ≤ r(p) < i. However, we will see that for
2n ≤ p ≤ |q|, the value r(p) is only possible for −1 ≤ r(p) < log2(d∗) + 1.
For simplicity reasons, we sometimes write only r if it is clear which p we
are meaning or if there are multiple p’s with the same value for r(p).

f1(r): This is a helping function which is needed in the further computations.
It is defined as:

f1(r) =

{
2r for r ≥ 0
1 for r = −1.

`′′(r) = #{j < r|dj−1 = 1}: For a given r, we define `′′ as the number of indices
strictly smaller than r for which dj−1 = 1. Again, we use sometimes only `′′

if it is clear to which r we refer.
v(p) = #{(m, c)|m+2c = p}: Let v(p) denote the number of pairs (m, c) which

create p = m + 2c.

In Case 2 in Section 3.2, we will see that it is sufficient to consider the indices
j with r(p) < j < i for knowing if there is a carry at position i− 1. To facilitate
the computation, we use the following notations:

p′

m′

c′

i

p

m

2c

r

1

mrmi−5

ci−6

mi−4mi−3mi−2mi−1mi

ci−1 ci−3 ci−4

1 0 pi−2 pi−3 0 pi−5 pi−3pi−2 pi−5

mi−5mi−3mi−2

ci−3 ci−4 ci−6

Fig. 4. Reduction of p, m, 2c to p′, m′, c′.

p′,m′ and c′: We mean with p′, m′ and c′ the bit strings p,m, 2c reduced to the
positions j with r < j < i and dj−1 = 1. An example can be seen in Fig. 4.

Remark 5. In the case of c′, we do not consider c but 2c. Let j1 be an index
r < j1 < i with dj1−1 = 1 and j2 its corresponding index in the reduction,
i.e. m′

j2
= mj1 . Then we use c′j2 = cj1−1. Furthermore, the value of c′ is a

continuous bit string, since we are only interested in positions where there
is a feedback register.

The length of p′, m′ and c′ is `′ − `′′ − 1 bits.
0p′ and 1p′: We obtain 0p′ and 1p′ by concatenating respectively 0 and 1 to the

left of the bit string p′.
X(p′): We denote by X(p′) the number of possibilities for m′ and c′ such that

1p′ = m′ + c′, which means that we have a carry at the position of the most
significant bit of m′.

3.2 Final Entropy Case by Case

We cannot write the sum (9) for the final entropy directly in a closed form.
However, we partition the set of all possible 0 ≤ p ≤ |q| in four cases. For each
case, we will evaluate the value v(p)

2n+` log2

(
2n+`

v(p)

)
for all its p’s. We obtain the

final sum of the entropy by summing up all these values.

Case 1: 1 ≤ i < n and di−1 = 0
To create pi = 1 at position i, we have to add mi + ca(i− 1). For each value

of ca(i − 1) there exists exactly one possibility for mi. For each position j
with a feedback bit, dj−1 = 1, we have two possibilities to create the value
of pj . In this case, we can write for each p:

v(p) = 2`′ .

For each i, all p’s within the range [2i, 2i+1[are possible. So we must add:

H1(n, i, `, `′) = 2i 2`′−n−`(n + `− `′) (10)

to the entropy for each 1 ≤ i ≤ n with di−1 = 0.
Case 2: 1 ≤ i < n and di−1 = 1:

For a given p we know from the definition of r(p) that for all j’s with r(p) <
j < i, if dj−1 = 0, then pj = 0. In the case of (dj−1 = 0, pj = 0), a carry
is always forwarded. This means that for m + 2c, if we have ca(j − 1) = 1,
mj must be 1 and we have ca(j) = 1. However, with ca(j − 1) = 0 we have
mj = 0, and so we have ca(j) = 0 as well. It is sufficient to consider the
`′ − `′′ − 1 positions j with i > j > r(p) for which dj−1 = 1, to know if we
have a carry at index i− 1.
From the definition of this case, we know that pi = 1 and di−1 = 1. If we
have ca(i− 1) = 0 we have two possibilities for (mi, di−1), namely (1, 0) and
(0, 1), to generate the pi = 1. Otherwise, we only have one possibility (0, 0).
For a given p′ we have:

X(p′) + 2(2`′−`′′−1 −X(p′)) = 2`′−`′′ −X(p′) (11)

possibilities to choose m′,c′ and (mi, di−1). The following lemma helps us to
compute X(p′). Its proof is given in Appendix B.
Lemma 1. Let p′,m′ and c′ be three bit strings of length K. For all 0 ≤ x ≤
2K − 1, there exists exactly one p′ with X(p′) = x, i.e. there exists exactly
one p′ such that for x different pairs (m′, c′) we can write 1p′ = m′ + c′.
In our case: K = `′ − `′′ − 1. The next question is, how many p’s have the
same reduction p′. If 0 ≤ r < i we have 2r possibilities, in the case r = −1
we have only one. We consider this behavior by using the helping function
f1(r).
By combining Lemma 1 and (11), we obtain that for each 2`′−`′′−1 +1 ≤ y ≤
2`′−`′′ there is exactly one p′ which is generated by y different combinations
of m′ and c′. Each p which corresponds to such a p′, is generated by y 2`′′

different pairs (m, c), since at each position j < r with dj−1 = 1 we have two

possibilities to create p. This means that this p has a probability of y 2`′′

2n+` .
For fixed values of i, r, `′ and `′′ we have to add the following value to the
entropy:

H2(n, r, `, `′, `′′)

= f1(r)
2`′−`′′∑

y=2`′−`′′−1+1

y2`′′

2n+`
log2

(
2n+`

y2`′′

)

= f1(r)2−n−`
[
2`′−2

(
3 2`′−`′′−1 + 1

)
(n + `− `′′)− 2`′′S1(`′ − `′′)

]
.

Thus, in this case, we have to add for every 1 ≤ i ≤ n − 1 with di−1 = 1,
and every −1 ≤ r < i with di−1 = 0 the value:

H2(n, r, `, `′, `′′)=f1(r)2−n−`
[
2`′−2

(
32`′−`′′−1+ 1

)
(n + `− `′′)−2`′′S1(`′−`′′)

]

(12)
where `′ = `′(i) and `′′ = `′′(r).

Case 3: i = n, 2n ≤ p ≤ |q|:
In this case, we always need a carry ca(n− 1) to create pn = 1. Like in the
previous case, we are going to use r(p), `′′, p′, (m′, c′) and X(p′). However,
this time we have i = n and ` = `′.
For p = |q|, which means that (m, c) consists of only 1’s, it holds that for all
n > j > log2(d∗)+1, we have pj = 0. If we would have a r(p) ≥ log2(d∗)+1,
then p would be greater than |q| which is not allowed. Therefore, r must be
in the range of −1 ≤ r < log2(d∗) + 1.
From Lemma 1, we know that for all 1 ≤ x ≤ 2`−`′′ − 1 there exists exactly
one p′ with X(p′) = x, i.e. there are x pairs of (m′, c′) with 1p′ = m′ + c′.
We exclude the case X(p′) = 0, because we are only interested in p′s that
are able to create a carry. For each p′, there are f1(r) possible values of p
which are reduced to p′. If p′ is created by x different pairs of (m′, c′), then
each of its corresponding values of p is created by x 2`′′ pairs of (m, c) and

has a probability of x 2`′′

2n+` .
For a given r and `′′ the corresponding summand of the entropy is:

H3(n, r, `, `′′) = f1(r)
2`−`′′−1∑

x=1

x 2`′′

2n+`
log2

(
2n+`

x 2`′′

)

= f1(r)2−n
[
2−1

(
2`−`′′ − 1

)
(n + `− `′′)− 2`′′−`S2(`− `′′)

]
.

In this case, we have to add for each value of −1 ≤ r < log2(d∗) + 1 with
dr−1 = 0 and `′′ = `′′(r):

H3(n, r, `, `′′) = f1(r)2−n
[
2−1

(
2`−`′′ − 1

)
(n + `− `′′)− 2`′′−`S2(`− `′′)

]
.

(13)
Case 4: 0 ≤ p ≤ 1

If p = 0 or p = 1, there exists only one pair (m, c) which can produce the
corresponding p. Thus, for each of these p’s we have to add:

H4(n, `) = 2−n−`(n + `) (14)

to the sum of the entropy.

The Algorithm 1 shows how we can compute the final entropy for an FCSR
defined by n and d using the summands of the individual cases.

Algorithm 1 Final entropy
1: Hf ← 0
2: `′ ← 0
3: `← wt(d)− 1
4: Hf ← Hf + 2H4(n, `) {p = 0 and p = 1}
5: for i = 1 to n− 1 do
6: if di−1 = 0 then
7: Hf ← Hf + H1(n, i, `, `′)
8: else {di−1 = 1}
9: `′ ← `′ + 1

10: `′′ ← 0
11: for r = −1 to i− 1 do
12: if dr−1 = 0 then
13: Hf ← Hf + H2(n, r, `, `′, `′′)
14: else {dr−1 = 1}
15: `′′ ← `′′ + 1
16: end if
17: end for
18: end if
19: end for
20: `′′ ← 0
21: for r = −1 to log2(d− 2n−1) do {2n ≤ p ≤ 2d− 1}
22: if dr−1 = 0 then
23: Hf ← Hf + H3(n, r, `, `′′)
24: else {dr−1 = 1}
25: `′′ ← `′′ + 1
26: end if
27: end for

3.3 Complexity of the Computation

The exact computation of the entropy requires to evaluate the sums S1(k) =∑2k−1
x=1 x log2(x) and S2(k) =

∑2k

x=2k−1+1 x log2(x). If we have stored the values
S1(k) and S1(k) for 1 ≤ k ≤ `, we are able to compute the final entropy in O(n2).
We need O

(
2`

)
steps to evaluate both sums, which is impractical for large `.

However, by using the bounds (20)-(21) for larger k’s, we can easily compute
a lower and upper bound of those sums. In Table 1, we compare for different
FCSRs the exact computation with those, using upper and lower bounds. The
values of d were randomly chosen. However, the accuracy of the estimation of
the sums can be shown anyway.

We mean by Hf the exact computation of the the final entropy. The values
lb/ub Hf mean the lower and the upper bound obtained by using the approxi-
mation of S1 and S2. The last two columns, lb/ub Hf , k > 5, we gain by using
the approximations only for k > 5. This last approximation is as close that we
do not see any difference between the lower and the upper bound in the first 8
decimal places.

n d ` Hf lb Hf ub Hf lb Hf , k > 5 ub Hf , k > 5

8 0xAE 4 8.3039849 8.283642 8.3146356 8.3039849 8.3039849

16 0xA45E 7 16.270332 16.237686 16.287598 16.270332 16.270332

24 0xA59B4E 12 24.273305 24.241851 24.289814 24.273304 24.273305

32 0xA54B7C5E 17 32.241192 32.289476 32.272834 32.272834

Table 1. Comparison of the exact computation of the final state entropy, with upper
and lower bounds.

4 Lower Bound of the Entropy

We can use the algorithm of the previous section and induction to give a lower
bound of the final state entropy. For a given n and ` we first compute the entropy
for an FCSR where all the carry bits are the ` least significant bits. Subsequently,
we show that by moving a feedback position to the left, the direction of the
most significant bit, we increase the final entropy. In both steps, we study all
0 ≤ p ≤ |q| case by case and use the summands of the entropy H1, H2,H3 and
H4 as presented in Section 3.

4.1 Basis of Induction

For a fixed n and ` we study the final state entropy of an FCSR with

d = 2n−1 + 2` − 1.

This represents an FCSR which has all its recurrent positions grouped together
at the least significant bits (see Fig. 5). Like in the previous section, we are going

2c

m

p

n 0

1`

Fig. 5. FCSR with d = 2` − 1 + 2n−1

to compute the entropy case by case.

– p = 0 and p = 1.
– 1 ≤ i ≤ `: Here we have di−1 = 1, `′ = i, r = −1 and 0 and thus `′′ = 0.
– ` < i < n: We have di−1 = 0 and `′ = `.
– 2n ≤ p ≤ |q|: Since it must hold that r ≤ log2(d∗) = log2(2`− 1) we see that

the only possible values for r are −1 and 0 and therefore `′′ = 0.

So in this case, the final entropy is:

Hf (n, d) = 2H4(n, `)

+
∑̀

i=1

(H2(n,−1, `, i, 0) + H2(n, 0, `, i, 0))

+
n−1∑

i=`+1

H1(n, i, `, `)

+ H3(n,−1, `, 0) + H3(n, 0, `, 0)
= n + `

(
2−n+`+1 − 2−n+1

)− 2−n−`+2S2(`) .

By using the lower bound (21) for S2(`) we can write:

Hf (n, d) ≥ n +
2−n+`+2

12 ln(2)
(
3− (4 + `)2−2` − 2−3` + 21−4`

)
.

Let us examine the function g(`) = 3− (4 + `)2−2` − 2−3` + 21−4`. It is easy to
verify that g(`+1)−g(`) > 0 for all ` ≥ 1. Thus, we can write g(`) ≥ g(1) = 7/4
for all ` ≥ 1 and finally:

Hf (n, d) ≥ n + 2−n+` 7
12 ln(2)

≥ n . (15)

4.2 Induction Step

We show that by moving one feedback position one position to the left, which
means in direction of the most significant bit, the final state entropy increases.
To prove this, we compare two cases A and B. In Case A we choose an s such

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

ss + 1

ss + 1

2c[B]

2c[A]

Fig. 6. Moving the feedback position.

that ds−1 = 1 and ds = 0. It must hold that:

1 ≤ s ≤ n− 2, (16)
3 ≤ n . (17)

To create Case B, we move the feedback at index s one position to the left. This
is equivalent to:

dB = dA − 2s−1 + 2s.

In Fig. 6, we display the two values 2cA and 2cB which we are going to use to
compute the different finale entropies. Let

L = #{j < s|dj−1 = 1}
be the number of feedback positions smaller than s. We mean by

Ir
<s = {−1 ≤ j < s : di−1 = 0}

the set of all indices smaller than s where there is no feedback and which are
thus possible values for r. It must hold that |Ir

<s| = s− L.
We want to show that:

Hf
B −Hf

A ≥ 0 . (18)

To do this, we study the different cases of p. Each time, we examine if the
summands from the algorithm in Section 3 are different or not. In the end we
sum up the differences.

– p = 0 or p = 1: The summands of the entropy in A and B are the same.
– i < s: The summands of the entropy in A and B are the same.
– n > i > s + 1:

• di−1 = 0: In this case, i and `′ are the same for A and B and thus the
summands of the entropy as well.

• di−1 = 1: We have:
L + 2 ≤ `′ ≤ ` .

∗ r < s: In this case, i, r, `′ and `′′ are the same and thus the summands
of the entropy as well.

∗ s + 1 < r: In this case, i, r, `′ and `′′ are the same and thus the
summands of the entropy as well.

∗ s ≤ r ≤ s + 1:
· A: Since for r it must hold that dr−1 = 0, we get r = s + 1 and

thus `′′ = L + 1. In this case, we have to count:

H2(n, s + 1, `, `′, L + 1) .

· B: In this case, we have r = s and `′′ = L and therefore the term:

H2(n, s, `, `′, L) .

– 2n ≤ p ≤ |q|:
• r < s: In this case, i, r and `′ are the same and thus the summands of

the entropy as well.
• s + 1 < r: In this case, i, r and `′ are the same and thus the summands

of the entropy as well.
• s ≤ r ≤ s + 1:

∗ A: We have r = s + 1 and `′′ = L + 1. Therefore, the summand of
the entropy in this case is:

H3(n, s + 1, `, L + 1) .

∗ B: We have to consider r = s and `′′ = L and therefore:

H3(n, s, `, L) .

– s ≤ i ≤ s + 1: We are going to use `′′(r) to denote the value of `′′ corre-
sponding to a specific r.
• i = s:

∗ A: In this case, we have di−1 = 1 and `′ = L + 1. Thus we have to
count for each r ∈ Ir

<s:

H2(n, r, `, L + 1, `′′(r)) .

∗ B: Since di−1 = 0 and `′ = L we get:

H1(n, s, `, L) .

• i = s + 1:
∗ A: In this case, we have `′ = L + 1 and di−1 = 0, thus we need to

consider:
H1(n, s + 1, `, L + 1) .

∗ B: This time, we have di−1 = 1. For `′ = L + 1, r ∈ Ir
<s and r = s

we get:
H2(n, r, `, L + 1, `′′(r)) .

In the case of r = s, we can write `′′ = L.

By combining all these results, we get a difference of the final entropies of:

Hf
B −Hf

A =
∑̀

`′=L+2

(H2(n, s, `, `′, L)−H2(n, s + 1, `, `′, L + 1))

+ H3(n, s, `, L)−H3(n, s + 1, `, L + 1)

+ H1(n, s, `, L)−
∑

r∈Ir
<s

H2(n, r, `, L + 1, `′′(r))

+
∑

r∈Ir
<s

H2(n, r, `, L + 1, `′′(r)) + H2(n, s, `, L + 1, L)

− H1(n, s + 1, `, L + 1)
= 2`−1 (4`− 4L− 2) + 22`−L + 2L+1 (3S2(`− L− 1)− S1(`− L)) .

If we use the lower bound (21) for S2(` − L − 1) and the upper bound (20) for
S1(`− L), we can write:

Hf
B −Hf

A ≥ 2L

(
(`− L)

1
4 ln(2)

+
7

12 ln(2)
+ 2−(`−L) 14− 12 2−(`−L)

12 ln(2)

)
.

From ` > L, it follows directly (18), which means that the difference of the final
entropies is greater or equal to 0.

Every FCSR with ` feedback positions can be build by starting with the
FCSR described in Section 4.1 and successively moving one feedback position to
the left. Thus, by combining (15) and (18) we write the following theorem.

Theorem 1. An FCSR in Galois architecture, with given values for n and `,
has at least n + 2`−n 7

12 ln(2) ≥ n bits of entropy if all 2n+` initial states appear
with the same probability.

5 Conclusion

If we allow all initial states of the FCSR with the same probability 2−n−`, we
have an initial entropy of the state of n + ` bits. We showed in this article that
already after one iteration, the entropy is reduced to n + `/2 bits.

As soon as the FCSR has reached its periodic behavior, the entropy does not
reduce any more. In this article, we presented an algorithm which computes this
final entropy in O

(
n2

)
steps. The algorithm is exact if the results of the sums

S1(k) =
∑2k

x=2k−1+1 x log2(x) and S2(k) =
∑2k−1

x=1 x log2(x) are known for k ≤ `.
For large values of `, the same algorithm allows us to give close upper and lower
bounds for the entropy by using approximations of S1(k) and S2(k).

In the end, we used the same algorithm to prove that the final state entropy
never drops under n bits. One might argue that this is evident, since there are
|q| different values of p and log2(|q|) ≈ n. However, it would be possible that the
probabilities are not very regular distributed and that we would have a lower
entropy. With our bound, it is sure that the entropy cannot drop under n bits.

The entropy of an FCSR decreases quite fast. However, it stays always larger
or equal to n bits.

References

[AB05a] F. Arnault and T.P. Berger. Design and properties of a new pseudorandom
generator based on a filtered fcsr automaton. IEEE Transactions on Com-
puters, 54(11):1374–1383, 2005.

[AB05b] F. Arnault and T.P. Berger. F-FCSR: Design of a new class of stream ci-
phers. In Henri Gilbert and Helena Handschuh, editors, FSE, Lecture Notes
in Computer Science, pages 83–97. Springer, 2005.

[ABL05] F. Arnault, T.P. Berger, and C. Lauradoux. F-FCSR. eSTREAM, ECRYPT
Stream Cipher Project, Report 2005/008, 2005. http://www.ecrypt.eu.org/
stream.

[ABL06] F. Arnault, T.P. Berger, and C. Lauradoux. Update on F-FCSR stream
cipher. In SASC, State of the Art of Stream Ciphers Workshop, pages 267–
277, Leuven, Belgium, February 2006. ECRYPT Network of Excellence in
Cryptology.

[ABM08] F. Arnault, T.P. Berger, and M. Minier. Some results on fcsr automata with
applications to the security of fcsr-based pseudorandom generators. IEEE
Transactions on Information Theory, 54(2):836–840, February 2008.

[CL94] R. Couture and P. L’Ecuyer. On the lattice structure of certain linear
congruential sequences related to AWC/SWB generators. Math. Comput.,
62(206):799–808, 1994.

[GK02] M. Goresky and A. Klapper. Fibonacci and galois representations of
feedback-with-carry shift registers. IEEE Transactions on Information The-
ory, 48(11):2826–2836, 2002.

[KG93] A. Klapper and M. Goresky. 2-adic shift registers. In Fast Software En-
cryption - FSE’93, Lecture Notes in Computer Science 809, pages 174–178.
Springer Verlag, 1993.

[KG97] A. Klapper and M. Goresky. Feedback shift registers, 2-adic span, and com-
biners with memory. J. Cryptology, 10(2):111–147, 1997.

[MZ91] G Marsaglia and A Zaman. A new class of random number generators. Annals
of Appl. Prob., 1(3):462–480, 1991.

A Bounds for the Sums

In this section, we prove the following lower and upper bounds:

2k∑

x=2k−1+1

x log2(x) ≥ 22k−3

(
3k + 1− 3

2 ln(2)

)
+2k−2(k + 1)+

1− 2−k+1

24 ln(2)
, (19)

2k∑

x=2k−1+1

x log2(x) ≤ 22k−3

(
3k + 1− 3

2 ln(2)

)
+2k−2(k + 1)+

1− 2−k + 321−2k

12 ln(2)
,(20)

2k−1∑
x=1

x log2(x) ≥ 22k−1

(
k − 1

2 ln(2)

)
− 2k−1k +

4 + k + 2−k+1

24 ln(2)
, (21)

2k−1∑
x=1

x log2(x) ≤ 22k−1

(
k − 1

2 ln(2)

)
− k 2k−1 +

4 + k + 2−k − 21−2k

12 ln(2)
. (22)

The idea of this proof is that:

1
2

(x log2(x) + (x + 1) log2(x + 1)) ≈
∫ x+1

x

y log2(y) dy ,

since log2(x) increases much slower than x and, thus, x log2(x) is almost a
straight line. This integral can be directly computed by:

∫ x+1

x

y log2(y) dy =
y2

2

(
log2(y)− 1

2 ln(2)

)∣∣∣∣
x+1

y=x

=
1
2

(x log2(x) + (x + 1) log2(x + 1))− 1
4

2x + 1
ln(2)

+ log2

(
1 +

1
x

)
x

2
(x + 1) .

We use the approximation of the natural logarithm:

1
ln(2)

(
1
x
− 1

2x2
+

1
3x3

− 1
4x4

)
≤ log2

(
1 +

1
x

)
≤ 1

ln(2)

(
1
x
− 1

2x2
+

1
3x3

)

for x > 0 to get:

1 + 2x

4 ln(2)
−

(
1
3x − 1

6x2 + 1
2x3

)

4 ln(2)
≤ x

2
(x + 1) log2

(
1 +

1
x

)
≤ 1 + 2x

4 ln(2)
−

(
1
3x − 2

3x2

)

4 ln(2)

and finally the bounds for the integral:
∫ x+1

x

y log2(y) dy ≥ 1
2

(x log2(x) + (x + 1) log2(x + 1))−
(

1
3x − 1

6x2 + 1
2x3

)

4 ln(2)
(23)

∫ x+1

x

y log2(y) dy ≤ 1
2

(x log2(x) + (x + 1) log2(x + 1))−
(

1
3x − 2

3x2

)

4 ln(2)
. (24)

By combining the exact value of the integral:
∫ 2k

2k−1
y log2(y) dy = 22k−3

(
3k + 1− 3

2 ln(2)

)

with the lower bound:
∫ 2k

2k−1
y log2(y) dy

≥ 1
2

2k−1∑

x=2k−1

x log2(x) +
1
2

2k∑

x=2k−1+1

x log2(x)− 1
4 ln(2)

2k−1∑

x=2k−1

(
1
3x

− 1
6x2

+
1

2x3

)

=
2k∑

x=2k−1+1

x log2(x)− 2k−2(k + 1)− 1
4 ln(2)

2k−1∑

x=2k−1

(
1
3x

− 1
6x2

+
1

2x3

)
.

gained by means of (23), we receive the upper bound:

2k∑

x=2k−1+1

x log2(x) ≤ 22k−3
(
3k + 1− 3

2 ln(2)

)
+ 2k−2(k + 1)

+ 1
4 ln(2)

∑2k−1
x=2k−1

(
1
3x − 1

6x2 + 1
2x3

)
.

(25)

In the same way, by using (24) we get:

2k∑

x=2k−1+1

x log2(x) ≥ 22k−3
(
3k + 1− 3

2 ln(2)

)
+ 2k−2(k + 1)

+ 1
4 ln(2)

∑2k−1
x=2k−1

(
1
3x − 2

3x2

)
.

(26)

Let us have a closer look at the two functions g1(x) = 1
3x − 1

6x2 + 1
2x3 and

g2(x) = 1
3x − 2

3x2 . If we analyze their first derivatives, we see that g1(x) is
decreasing for x ≥ 1 and g2(x) is decreasing for x ≥ 4. For the upper bound of
the sum, we can write directly:

2k∑

x=2k−1+1

x log2(x) ≤ 22k−3

(
3k + 1− 3

2 ln(2)

)
+ 2k−2(k + 1)

+
1

4 ln(2)

2k−1∑

x=2k−1

(
1

3 2k−1
− 1

6 22k−2
+

1
2 23k−3

)

= 22k−3

(
3k + 1− 3

2 ln(2)

)
+ 2k−2(k + 1) +

1− 2−k + 3 21−2k

12 ln(2)

for all k ≥ 1. In the case of the lower bound, we can write:

2k∑

x=2k−1+1

x log2(x) ≥ 22k−3

(
3k + 1− 3

2 ln(2)

)
+ 2k−2(k + 1)

+
1

4 ln(2)

2k−1∑

x=2k−1

(
1

3 2k
− 2

3 22k−2

)

= 22k−1

(
k − 1

2 ln(2)

)
− 2k−1k +

4 + k + 2−k+1

24 ln(2)

for k ≥ 3. However, we can verify by numeric computation that the lower bound
also holds in the cases k = 1 and k = 2. Thus, we have shown (19) and (20) for
k ≥ 1. Finally, by employing:

2K−1∑
x=1

x log2(x) =
K∑

k=1

2k∑

x=2k−1+1

x log2(x)−K2K

and the previous results, we receive the bounds (21) and (22).

B Proof of Lemma 1

Proof. Let p′, m′, c′ be three bit strings of size k and let X(p′) be the number of
possible pairs (m′, c′) such that 1p′ = m′ + c′. We are going to use the following
properties:

– For a given p′, let (m′, c′) be such that 1p′ = m′+c′. We have two possibilities
10p′ = 0m′ + 1c′ = 1m′ + 0c′ to create 10p′. If (m′, c′) is such that 0p′ =
m′ + c′, we only have one possibility 10p′ = 1m′ + 1c′ to build 10p′. Thus,
we can write:

X(0p′) = 2 X(p′) + 1
(
2k −X(p′)

)
. (27)

– The only possibility to create 11p′ is 11p′ = 1m′+1c′ for a (m′, c′) such that
1p′ = m′ + c′. Therefore, it holds that

X(1p′) = X(p′). (28)

– If the most significant bit of p′ is a 0 followed by k times 1, we can only
generate the carry in the last position. This is due to the fact that to create
a carry and a 1 in the sum, we need three 1’s which is not possible if we
do not have a carry. So we have to create the carry in the highest position
by m′

k = c′k = 1. For the previous positions 0 ≤ j < k we always have two
possibilities for (m′

j , c
′
j), respectively (0, 1) and (1, 0). Thus, in total we have

2k choices for (m′, c′).

X(0

k︷ ︸︸ ︷
1 . . . 1) = 2k. (29)

– As we have said above, it is not possible to create a carry with only 1’s in
p′ and no previous carry, thus:

X(1 . . . 1) = 0. (30)

We are now going to use induction over the length k of the bit strings p′,m′ and
c′ to show that for all 0 ≤ x ≤ 2k− 1 there exists exactly one p′ with X(p′) = x.

Basis, k = 1:
From (29) and (30) we can easily see that:

X(1) = 0,

X(0) = 1.

Induction step, k → k + 1:
We assume that for every 0 ≤ x ≤ 2k − 1 there exists a p′ of length k such
that X(p′) = x . We want to show that the same assumption holds for k +1.
– x = 2k: From (29), we know that X(p′) = 2k if p′ = 011 . . . 1 with k 1’s.
– 0 ≤ x ≤ 2k − 1: From the assumption, we know that there exists a p′ of

length k with X(p′) = x, thus by using (28) we can write X(1p′) = x.
– 2k < x ≤ 2k+1 − 1: In this case 0 ≤ x − 2k ≤ 2k − 1 and due to the

assumption, we know that there exists a p′ such that X(p′) = x−2k. By
using (27) we get:

X(0p′) = 2X(p′) +
(
2k −X(p′)

)

= 2(x− 2k) + (2k − x + 2k)
= x.

We have proven that for all 0 ≤ x ≤ 2k − 1 there exists a p′ of length k,
such that X(p′) = x, i.e. there are exactly x pairs (m′, c′) of length k bits with
1p′ = m′ + c′. Since in total there are only 2k possible values of p′ of length k,
we see that there exists exactly one.

