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Abstract. The classical design principle Merkle-Damg̊ard [13, 6] is scru-
tinized by many ways such as Joux’s multicollision attack, Kelsey-Schneier
second preimage attack etc. In TCC’04, Maurer et al. introduced a strong
security notion called as “indifferentiability” for a hash function based
on a compression function. The classical design principle is also insecure
against this strong security notion whereas chopMD hash is secure with
the security bound roughly σ2/2s where s is the number of chopped bits
and σ is the total number of message blocks queried by a distinguisher.
In case of n = 2s where n is the output size of a compression function,
the value σ to get a significant bound is 2s/2 which is the birthday com-
plexity, where the hash output size is s-bit. In this paper, we present
an improved security bound for chopMD. The improved bound shown in
this paper is (3(n−s)+1)q/2s +q/2n−s−1 +σ2/2n+1 where q is the total
number of queries. In case of n = 2s, chopMD is indifferentiably-secure
if q = O(2s/(3s + 1)) and σ = O(2n/2) which are beyond the birthday
complexity. We also present a design principle for an n-bit hash function
based on a compression function f : {0, 1}2n+b → {0, 1}n and show that
the indifferentiability security bound for this hash function is roughly
(3n + 1)σ/2n. So, the new design of hash function is second-preimage
and r-multicollision secure as long as the query complexity (the number
of message blocks queried) of an attacker is less than 2n/(3n + 1) or
2n(r−1)/r respectively.

1 Introduction

In TCC 2004, Maurer et al. [11] introduced the notion of indifferentiability which
is more stronger notion than classical indistinguishability security notion. They
have shown that if a cryptosystem P(G) based on a random oracle G is secure
then the security of P(HF) based on Merkle-Damg̊ard (MD) [13, 6] hash function
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H with a random oracle [1, 15] as an underlying compression function, is secure
provided the hash function is indifferentiable. Informally, HF is indifferentiable
from random oracle if there is no efficient attacker (or distinguisher) which can
distinguish F and the hash function based on it from a random oracle R and
an efficient simulator of F . Here R is a random oracle with (finite) domain and
range same as that of H . In case of Indistinguishability, the distinguisher only
needs to tell apart H from G without any help of oracle F . Thus, the notion
of indifferentiability is stronger and it is important when we consider attacks
on a cryptosystem based on some ideal primitive where the attacker has some
access on the computation of the primitive. In the case of hash function HF , the
attacker can also compute F as it is a random oracle which can be computed
publicly. On the other hand, if the attacker does not have that access (to the
random oracle) then merely indistinguishability will suffice to preserve the secu-
rity of the cryptosystem.

In Crypto 2005, Coron et al. [5] proved that the classical MD iteration is not
indifferentiable with random oracle when the underlying compression function is
random oracle. They have also stated indifferentiability for chopMD, prefix-free
MD (or pfMD), NMAC construction, HMAC construction, and provided a bound
for these as O(σ2/2n) where σ is the total number of message blocks queried by
a distinguisher, the hash output size is n, and the number of chopped bits is
n. Thus, according to their claim, chopMD is secure in this strong notion as
long as the total number of message blocks queried is σ = O(2n/2). In Asiacrypt
2006, Chang et al. [4] also have provided a concrete security analysis of the many
indifferentiable hash constructions. They have provided a security analysis for
double length hash function based on prefix free padding. In Asiacrypt 2006,
Bellare and Ristenpart [2] proposed an indifferentiably-secure domain extension
called by EMD which also preserves pseudorandomness and collision resistance.
Very recently in Asiacrypt 2007, Hirose et al. [7] introduced an indifferentiably-
secure domain extension called by MDP which also preserves pseudorandomness,
collision resistance and unforgeability. All of these constructions have bounds of
the form of birthday collision probability. Recently in Crypto 2007, Maurer and
Tessaro [12] firstly presented a construction which has security beyond the birth-
day barrier. Table 1 summarizes the security bound of above constructions.

Our Results. In this paper, we prove a better bound of chopMD which is
beyond the birthday bound. We prove that chopMD is secure if σ = O(2n/2)
and the number of queries Q = O(min(2n−s−1, 2s

3(n−s)+1 )), where n is the output

length of the compression function and s is the chopped bit length and σ is the
total number of message blocks queried. When s = n/2 our bound shows that
chopMD is secure as long as the number of queries is less that 2s/(3s+1) which
is better than the original proposal (where security is guaranteed only when the
number of queries is less than 2s/2). As a result we propose a wide pipe version of
MD-hash function which is second-preimage and r-multicollision secure as long
as the query complexity (the number of message blocks queried) of an attacker



is less than 2n/(3n + 1) or 2n(r−1)/r respectively. This hash function is more
efficient to the Lucks’ [10] wide pipe hash design as our hash function does not
need the post-processor.

Domain Extensions The value σ to get a significant bound

chopMD [5]
prefix-free MD [4, 5]

NMAC construction [5] 2s/2 : the Birthday Bound
HMAC construction [5]

EMD [2]
MDP [7]

prefix-free chopMD [12] 2s : Beyond the Birthday Bound

chopMD [This paper] 2s/(3s + 1) : Beyond the Birthday Bound

Table 1. Comparison of Indifferentiable Security when the hash output size is s and
the chopped bit size is s and σ is the total number of message blocks queried by a
distinguisher. Note that q is less than σ.

Organization. In section 2, we first state some important definitions and results
related to our paper. We state an important result known as strong interpolation
theorem in this section. Then in Section 3, we provide a concrete and improved
security analysis for chopMD. As an application of the improved security analysis
of chopMD, we propose a secure chopDBL hash design in section 4. Finally, we
conclude.

2 Some Notations and Results

Counting. Let F := Func(n+b, n), the set of all functions f : {0, 1}n×{0, 1}b →

{0, 1}n. It is easy to see that |F| = 2n2n+b

. Now, for any distinct ai’s, the number

of functions f such that f(a1) = z1, · · · , f(aq) = zq is exactly 2n(2n+b−q) because,
the outputs of q elements are fixed and the rest (2n+b − q) many outputs can be

chosen in (2n)(2
n+b−q) many ways. Thus, Pru[u(a1) = z1, · · · , u(aq) = zq] = 1

2nq

where u is the uniform random function on F (an uniform random variable tak-
ing values on F).

Inequalities. P(m, r) = m(m − 1) · · · (m − r + 1) where 0 ≤ r ≤ m. By our
convention, P(m, 0) = 1. We state two inequalities which will be used in this
paper.

[ineq-1] For any 0 ≤ ai ≤ 1,
∏k

i=1(1 − ai) ≥ 1 −
∑k

i=1 ai. One can prove
it by induction on k.

[ineq-2] P(m − x, r) ≥ mr × (1 − (x+r)2

2m ) where m ≥ x + r. This is followed

from ineq-1, by choosing ai = x+i
m , 0 ≤ i ≤ r − 1.



MD-hash. We fix an initial value IV ∈ {0, 1}n throughout the paper. Given a
function f : {0, 1}n+b → {0, 1}n we define

MDf (m1, · · · , mℓ) = f(f(· · · f(f(IV, m1), m2), · · · ), mℓ)

where mi ∈ {0, 1}b. MDf is popularly known as Merkle-Damg̊ard hash function
with underlying compression function f . We define MDf (λ) = IV where λ is the
empty string. Given p = (m1, · · · , mℓ) ∈ ({0, 1}b)ℓ with ℓ ≥ 1 we define

– last(p) = mℓ.

– If ℓ ≥ 2 we write cut(p) = (m1, · · · , mℓ−1), otherwise cut(m1) = λ.

– Note that p = (cut(p), last(p)) and MDf (p) = f(MDf (cut(p)), last(p)).

chopMD. For 0 ≤ s ≤ n we define chops(x) = xR where x = xL ‖ xR and |xL| =
s. In this paper, we fix 0 < s < n and define chopMDf (M) = chops(MDf (M)).

Padding. Note that both MD and chopMD have domain ({0, 1}b)+. We write
||M || = k if M ∈ ({0, 1}b)k and k is called as the number of blocks of M .
We say M ′ is a prefix of M if M ′, M ∈ ({0, 1}b)+ and M = M ′ ‖ x for
some x ∈ ({0, 1}b)∗. We say any injective function pad : {0, 1}∗ → ({0, 1}b)+

as a padding rule. A padding rule pad is called a prefix free if M1 6= M2

⇒ pad(M1) is not a prefix of pad(M2). For any such prefix-free padding rule

pad, pfMD is defined as follows. pfMDf
pad(M) = MDf (pad(M)). We also write

choppfMDf
pad(M) = chops(MDf (pad(M))).

View. In this paper we consider a distinguisher A which has access of two
oracles O1 and O2. We assume that A is deterministic and computationally
unbounded1. We assume that all queries are distinct and it makes at most
Qi queries to the oracle Oi. Suppose A makes Mi as O1-query and obtains
responses hi, 1 ≤ i ≤ q1. Similarly, the tuple of all query-responses of O2

is ((x1, m1, z1), · · · , (xq2 , mq2 , zq2)). The combined tuple v = ((M1, h1), · · · ,
(Mq1 , hq1), (x1, m1, z1), · · · , (xq2 , mq2 , zq2)) is called as the view of A. We also
denote vO1,O2 to specify that the view is obtained after interacting with O1 and
O2. We also denote i-th query-response pair by (Xi, Yi), where Xi = (xj , mj) or
Xi = Mj for a j. So we can define the first i query-response pairs of the tuple v
by vi = ((X1, Y1), · · · , (Xi, Yi)).

Advantage. Let Fi, Gi be probabilistic oracle algorithms. We define advantage
of the distinguisher A at distinguishing (F1, F2) from (G1, G2) as

AdvA((F1, F2), (G1, G2)) = |Pr[AF1,F2 = 1] − Pr[AG1,G2 = 1]|.

Theorem 1. (Strong Interpolation Theorem) If there is a set of good views
Vgood such that

1 computationally unbounded deterministic algorithms are as powerful as randomized
algorithms.



1. for all v ∈ Vgood, Pr[vF1,F2 = v] ≥ (1 − ε) × Pr[vG1,G2 = v] and

2. Pr[vG1,G2 ∈ Vgood] ≥ 1 − ε′

then for any A we have AdvA((F1, F2), (G1, G2)) ≤ ε + ε′.

Proof. Intuitively, a view of AG1,G2 is good with probability at least 1−ε′. More-
over, A obtains a good view v with almost same probability for both pairs of
oracles up to a factor of (1−ε). Then intuitively the distinguishing advantage of
A should be bounded by ε+ ε′. More precisely, we prove it as in below where V1

denotes the set of all views v such that A returns 1 after obtaining the view2.
V0 denotes the set of all views v such that A doesn’t returns 1 after obtaining
the view. And let α(v) = Pr[A(vi−1) = Xi for all 0 ≤ i ≤ q1 + q2]. Our proof is
directly from the idea explained in [3].

Pr[AG1,G2 = 1] − Pr[AF1,F2 = 1]

=
∑

v∈V1∩Vgood
α(v)Pr[vG1,G2 = v] +

∑
v∈V1\Vgood

α(v)Pr[vG1,G2 = v]

−
∑

v∈V1∩Vgood
α(v)Pr[vF1,F2 = v] −

∑
v∈V1\Vgood

α(v)Pr[vF1,F2 = v]

≤ ε′ +
∑

v∈V1∩Vgood
α(v)Pr[vG1,G2 = v] −

∑
v∈V1∩Vgood

α(v)Pr[vF1,F2 = v]

≤ ε′ +
∑

v∈V1∩Vgood
α(v)(Pr[vG1,G2 = v] − Pr[vF1,F2 = v])

≤ ε′ + ε
∑

v∈V1∩Vgood
α(v)Pr[vG1,G2 = v]

≤ ε′ + ε
∑

v∈V1∩Vgood
Pr[vG1,G2 = v]

≤ ε′ + ε.

Pr[AF1,F2 = 1] − Pr[AG1,G2 = 1] = Pr[AG1,G2 6= 1] − Pr[AF1,F2 6= 1]

=
∑

v∈V0∩Vgood
α(v)Pr[vG1,G2 = v] +

∑
v∈V0\Vgood

α(v)Pr[vG1,G2 = v]

−
∑

v∈V0∩Vgood
α(v)Pr[vF1,F2 = v] −

∑
v∈V0\Vgood

α(v)Pr[vF1,F2 = v]

≤ ε′ +
∑

v∈V0∩Vgood
α(v)Pr[vG1,G2 = v] −

∑
v∈V0∩Vgood

α(v)Pr[vF1,F2 = v]

≤ ε′ +
∑

v∈V0∩Vgood
α(v)(Pr[vG1,G2 = v] − Pr[vF1,F2 = v])

≤ ε′ + ε
∑

v∈V0∩Vgood
α(v)Pr[vG1,G2 = v]

≤ ε′ + ε
∑

v∈V0∩Vgood
Pr[vG1,G2 = v]

≤ ε′ + ε.

Indifferentiability

We give a brief introduction of indifferentiability and state significance of it. The
following definition is a slightly modified version of the original definition [11, 5],
where the condition that the maximum number of message blocks queried by a
distinguisher is σ is not described.

2 since A is deterministic algorithm the output of A is completely determined by the
view.



Definition 1. [11] A Turing machine C with oracle access to an ideal primitive
F is said to be (tA, tS , q, σ, ε)-indifferentiable from an ideal primitive G if there
exists a simulator S such that for any distinguisher A it holds that :

AdvA((C,F), (G, S)) = |Pr[AC,F = 1] − Pr[AG,S = 1]| < ε

The simulator S is an interactive algorithm which has oracle access to G and
runs in time at most tS. The distinguisher A runs in time at most tA and makes
at most q queries. The total message blocks queried by A is at most σ.

The following Theorem [11] due to Maurer et al. is related to this paper. We
explain the theorem for random oracle model of hash functions. Suppose a hash
function (in some design of iteration) H based on a random oracle (or an ideal
cipher) F is indifferentiable from a random oracle G. Then a cryptosystem P
based on the random oracle G is at least as secure as the cryptosystem P based
on the hash function H in the random oracle model (or an ideal cipher model)
F . Here, F is the underlying compression function of H (or block-cipher in case
of block cipher based hash function). The original theorem as stated below is a
more general statement.

Theorem 2. [11] Let P be a cryptosystem with oracle access to an ideal prim-
itive G. Let H be an algorithm such that HF is indifferentiable from G. Then
cryptosystem P is at least as secure in the F model with algorithm H as in the
G model.

In this paper we consider G and F as the arbitrary input length random
oracle R and the fixed input length random oracle f , respectively. And C is
the chopMD hash function. If chopMDf is (tA, tS , q, σ, ε)-indifferentiable from
the random oracle R, we also say that the indifferentiability insecurity bound of
chopMDf is ε.

3 Improved indifferentiability analysis of chopMD

Coron et al. [5] stated MD hash function is not indifferentiability-secure whereas
prefix free MD construction or chopMD construction in random oracle (or in
ideal cipher model) is secure against indifferentiability attack. In [5], they had
proved the following statement for a distinguisher which makes queries whose
total number of message blocks is σ. And u is the random oracle from the set of
all n + b bits to the set of n bits.

1. The indifferentiability insecurity for pfMDu

pad is upper bounded by O(σ2/2n)
where pad is any prefix-free padding.

2. The indifferentiability insecurity for chopMDu

pad is upper bounded by O(σ2/2s).

Very recently, Maurer and Tessaro considered the combination of prefix free
MD and chopMD [12], i.e., choppfMDu

pad. They proved that the indifferentiabil-
ity insecurity for this combination is bounded by O(σ2/2n). This is an improved



bound compare to the bound for chopMD. Since choppfMD outputs n − s bits,
the security bound is beyond the birthday barrier. A prefix-padding may cost
extra overhead in terms of efficiency and designs. In this section, we show that
the the prefix-padding is not necessary to obtain the similar kind of bound.
In other words, we provide an improved bound of chopMD and the improved
bound stated in this paper is (3(n − s) + 1)q/2s + q/2n−s−1 + σ2/2n+1 where
q denotes the the maximum number of queries for two oracles and σ is the to-
tal number of message blocks queried by a distinguisher. If we choose s = n/2
then to have a significant advantage, the total number of blocks of all queries
should be at least 2s/(3s+1) which is far beyond the birthday attack complexity.

The organization of section 3 is as follows. In subsection 3.1, we define a set
of good views Vr

good and give a lower bound of Pr[vF1,F2 = v] for all v ∈ Vr
good,

where F1 is chopMDu and F2 is u. In subsection 3.2, we give an upper bound
of Pr[vG1,G2 = v] for all v ∈ Vr

good, where G1 is the random oracle R and G2 is

the simulator SR described in subsection 3.2. In subsection 3.3, we compute ε
and ε′ such that for all v ∈ Vgood, Pr[vF1,F2 = v] ≥ (1 − ε) × Pr[vG1,G2 = v] and
Pr[vG1,G2 ∈ Vgood] ≥ 1 − ε′. Finally, based on Theorem 1 (strong interpolation
theorem), we conclude in Theorem 3 that the indifferentiability insecurity bound
of chopMDu is ε∗ = ε + ε′.

3.1 Interpolation probability of chopMD and its underlying random

oracle

We first provide a lower bound on the number of functions when some inputs-
outputs of f and MDf are known. More precisely, we want to compute the
number of functions f such that

MDf (Mj) = hj and f(ai) = zi, 1 ≤ j ≤ q1, 1 ≤ i ≤ q2

where ai ∈ {0, 1}n+b are distinct, Mj ∈ ({0, 1}b)+ are distinct. Intuitively, we say

the above set of relations is irreducible (see definition 2 in below) if MDO2(Mi) is
not determined from O2(x1, m1) = z1, · · · ,O2(xq2 , mq2) = zq2 and MDO2(Mj) =

hj for all j 6= i. Thus, q1 many outputs of MDf add q1 more restrictions on the
outputs of f besides q2 many input-output relations of f . Hence the number

of functions f should be close to 2n(2n+b−q1−q2). In lemma 1 we will show that

the number of functions is at least (1 − ν) × 2n(2n+b−q1−q2) for some positive ν
(stated in the lemma 1) close to zero. The above statement is also equivalent to

Pru[MDu(Mj) = hj , u(ai) = zi ∀1 ≤ j ≤ q1, 1 ≤ i ≤ q2] ≥
1

2n(q1+q2)
× (1 − ν).

Definition 2. The set of relations

MDO2(M1) = h1, · · · , MDO2(Mq1) = hq1 ,
O2(x1, m1) = z1, · · · ,O2(xq2 , mq2) = zq2 · · · · · · (rel-A)



is said to be irreducible if M1, · · · , Mq1 ∈ ({0, 1}b)+ are distinct, (x1, m1),
· · · , (xq2 , mq2) ∈ {0, 1}n+b are distinct, h1, · · · , hq1 ∈ {0, 1}n are distinct from

xi’s and IV and finally the value of MDO2(Mi) is not determined from the re-
lations O2(x1, m1) = z1, · · · , O2(xq2 , mq2) = zq2 . A tuple of elements v =
((M1, h1), · · · , (Mq1 , hq1), (x1, m1, z1), · · · , (xq2 , mq2 , zq2)) is irreducible if the above
rel-A is irreducible3.

Remark 1. Intuitively, it says that there is no redundant relation in rel-A. All
the inputs of O1 and O2 are distinct. O1(Mi) = MDO2(Mi) is also not deter-
mined from the relations O2(x1, m1) = z1, · · · ,O2(xq2 , mq2) = zq2 . Moreover,

as hi’s are distinct from xi’s and IV, MDO2(Mi) is also not determined from
O2(x1, m1) = z1, · · · ,O2(xq2 , mq2) = zq2 and MDO2(Mj) = hj for all j 6= i.

Lemma 1. Let a tuple v = ((M1, h1), · · · , (Mq1 , hq1), (x1, m1, z1), · · · , (xq2 , mq2 , zq2))
be irreducible then the number of functions f such that

1. MDf (M1) = h1, · · · , MDf (Mq1) = hq1 and
2. f(x1, m1) = z1, · · · , f(xq2 , mq2) = zq2 .

is at least |F|

2n(q1+q2) × (1 − σ2

2n+1 ) where σ is the total number of message blocks
queried. In other words,

Pru[MDu(M1) = h1, · · · , MDu(Mq1) = hq1 , u(x1, m1) = z1, · · · , u(xq2 , mq2) = zq2 ]

≥
1

2n(q1+q2)
× (1 −

σ2

2n+1
).

Proof. See the appendix.

Now we compute the joint probability for chopMDu and u. The next lemma
is analogue version of Lemma 1 for chopMD hash function instead of MD hash
function. Here, we allow collisions among outputs of chopMD. Intuitively, if
chopMDu behaves as an uniform random function then Pru[chopMDu(Mj) =
yj , u(xi, mi) = zi, 1 ≤ j ≤ q1, 1 ≤ i ≤ q2] ideally should be 1

2nq2+(n−s)q1
. Since

chopMDu(Mj) = yj has some influence on the intermediate computations we
would rather expect a probability close to the above probability. In lemma 2 we
show that the for a given choices of inputs and outputs satisfying some conditions
(stated in the lemma 2) the above probability is at least 1−∆

2nq2+(n−s)q1
for some

positive ∆ (defined in the lemma 2) which is close to zero for reasonable choices
of parameters.

Lemma 2. The number of functions f such that

1. chopMDf (M1
1 ) = · · · = chopMDf (M1

r1
) = y1, · · · , chopMDf (M t

1) = · · · =

chopMDf (M t
rt

) = yt and

3 From the definition it is clear that irreducibility of the relation does not depend on
the choice of the functions or oracles O1 and O2. This only depends on Mj ’s, hj ’s,
(xi, mi)’s and zi’s, 1 ≤ j ≤ q1 and 1 ≤ i ≤ q2.



2. f(x1, m1) = z1, · · · , f(xq2 , mq2) = zq2 .

is at least |F| × 1−∆
2nq2+(n−s)q1

where

∆ =
r(q1 + q2)

2s
+

σ2

2n+1
, r = maxiri,

∑

i

ri = q1.

Here, σ is the total number of message blocks queried. M i
j ’s are distinct elements

from ({0, 1}b)+ such that the value of MDf (Mi) is not determined from the
relations f(x1, m1) = z1, · · · , f(xq2 , mq2) = zq2 . The values of (xi, mi)’s are
distinct elements from {0, 1}n × {0, 1}b. In terms of probability, we have

Pru[chopMDu(M i
j) = yi, u(x1, m1) = z1, · · · , u(xq2 , mq2) = zq2 , ∀i, j] ≥

1 − ∆

2nq2+(n−s)q1
.

Proof. See the appendix.

Definition 3. A view v = ((M1, h1), · · · , (Mq1 , hq1),(x1, m1, z1), · · · , (xq2 , mq2 , zq2))

is said to be r-good if (xi, mi)’s are distinct, Mj’s are distinct, MDO2(Mj) is not
determined from the relations O2(xi, mi) = zi and there is no r-multicollision
in chop(zi)’s and hi’s. The set of all r-good views is denoted by Vr

good.

By using lemma 2 we have similar result for chopMDu and u.

Proposition 1. For any r-good view v = ((M1, h1), · · · , (Mq1 , hq1),(x1, m1, z1),
· · · , (xq2 , mq2 , zq2)), the probability that v is a view when A is interacting with

chopMDu and u, is at least 1−∆
2nq2+(n−s)q1

where ∆ = r(q1+q2)
2s + σ2

2n+1 and σ is the
total number of message blocks queried.

3.2 Interpolation probability of A Simulator and Random Oracle

Now we define a simulator S which almost behaves as a random oracle. Moreover,
for an (n−s)-bit outputting random oracle R, responses of MDS will match with
R. By the notation x ∈R A we mean that x is chosen uniformly from A and it
is independent with all previously defined random variables.

Definition of Simulator

Initialization :

1. A partial function e1 : {0, 1}n+b → {0, 1}n initialized as empty,
2. a partial function e∗1 = MDe1 : ({0, 1}b)∗ → {0, 1}n initialized as e∗1(λ) = IV.
3. a set C = {IV}.

On query SR(x, m) :



001 if (e1(x, m) = x′)
return x′;

002 else if (∃ M ′, e∗1(M
′) = x)

y = R(M ′, m);
choose w ∈R {0, 1}s \ {w′ : w′ ‖ y ∈ C ∪ {x}};
define e1(x, m) = z := w ‖ y;
define C = C ∪ {x, z};
define e∗1(M

′, m) = z;
return z;

003 else

y ∈R {0, 1}n−s;
choose w ∈R {0, 1}s \ {w′ : w′ ‖ y ∈ C ∪ {x}};
define e1(x, m) = z := w ‖ y;
define C = C ∪ {x, z};
return z;

In 002, we have w ∈R {0, 1}s \ {w′ : w′ ‖ y ∈ C ∪{x}}. This is not possible if
and only if the above set becomes empty. Note that after ith query the size of C
is less than or equal to (2i + 1). Thus we assume that q2, the maximum number
of queries to the simulator (and hence for oracle O2) satisfies the condition
2q2 + 2 < 2s equivalently q2 ≤ 2s−1 − 2.

Some important observations

Distinct Query. Suppose AO1,O2 is an oracle algorithm where O1 = R and
O2 = SR. Note that SR responses identically in identical queries and so does R.
Same property is true for chopMDf and f . Hence we assume that all queries to
O1 and O2 are distinct.

chopMD
S
= R. All responses of S are distinct and distinct from IV and the first

n-bits of all previous S-queries. Whenever MDS(M) is computable from the all
previous query-responses, we have chopMDS(M) = R(M). Thus, chopMDO2(M) =
O1(M) whenever chopMDO2(M) is computable from O2 query-responses only.
Obviously this is true when O1 = chopMDf and O2 = f . Thus, we assume that
A do not make any O1-query which is computable from the previous query-
responses of O2. More particularly, we can remove all those O1-queries from the
final view which are computable from the query-responses of O2.

Distribution. Because of the above two assumptions, the last (n−s) bits of out-
puts of SR(·) and outputs of R(·) are uniformly and independently distributed
over the set {0, 1}n−s. By our assumption, whenever line002 is executed, A does
not make (M ′, m)-query to R. Thus, the output distribution of R(·) and S(·) are
independent.

Now, a typical view of AO1,O2 is a tuple

v = ((M1, h1), · · · , (Mq1 , hq1), (x1, m1, z1), · · · , (xq2 , mq2 , zq2))



where O1(Mj) = hj and O2(xi, mi) = zi. Moreover, (xi, mi)’s are distinct, Mj’s

are distinct and MDO2(Mj) is not determined from the relations O2(xi, mi) = zi.
Now we compute the joint interpolation probabilities for S and R. More precisely,
p := Pr[R(Mj) = hj ∀j and S(xi, mi) = zi ∀i]. Since outputs of S and outputs of
R are independently distributed, it is sufficient to compute the joint probabilities
of S and R separately. Obviously, Pr[R(Mj) = hj ∀j] = 1

2(n−s)q1
. Now on ith

query of S, the response of (xi, mi) is zi with probability at most 1
2n−s × 1

2s−ℓi

where
ℓi = |{k : 1 ≤ k ≤ q2, chop(xk) = chop(zi)}|

+ |{k : 1 ≤ k ≤ q2, chop(zk) = chop(zi)}| + 1.

ℓi is the upper bound of the size of the set {w′ : w′ ‖ y ∈ C ∪ {x}} appeared in
the ith query of S. Multiplying all these probabilities we obtain Pr[S(xi, mi) =
zi ∀i] ≤ 1

2nq2
× 1

1−
∑

i ℓi/2s .

It is easy to see that for any r-good view
∑

i ℓi ≤ (2r + 1)q2. Thus, we have
proved the following result.

Proposition 2. For any r-good view v = ((M1, h1), · · · , (Mq1 , hq1), (x1, m1, z1),
· · · , (xq2 , mq2 , zq2)), the probability that v is a view when A is interacting with
the simulator S and a random oracle R, is at most 1

2nq2+(n−s)q1
× 1

1−(2r+1)q2/2s .

3.3 Indifferentiability Security Bound of chopMD

Now we compute ε and ε′ such that for all v ∈ Vgood, Pr[vF1,F2 = v] ≥ (1 − ε) ×
Pr[vG1,G2 = v] and Pr[vG1,G2 ∈ Vgood] ≥ 1 − ε′, where F1 is chopMDu, F2 is u, G1

is the random oracle R and G2 is the the simulator SR.

The Value of ε. By proposition 1 and 2, for all v ∈ Vgood, we have a lower
bound of Pr[vF1,F2 = v] and an upper bound of Pr[vG1,G2 = v]. So, we can choose

ε= (3r+1)q2+rq1

2s + σ2

2n+1 . When r = n − s, ε= (3(n−s)+1)q2+(n−s)q1

2s + σ2

2n+1 .

The Value of ε′. Now we compute ε′ such that Pr[vG1,G2 ∈ Vgood] ≥ 1 − ε′,
where G1 is the random oracle R and G2 is the simulator SR. vG1,G2 ∈ Vgood

means that the view vG1,G2 is r-good. Therefore, we have to prove that the
upper bound of the probability that there is a r-multicollision among q uni-
formly and independently chosen (n − s)-bits is ε′. Let’s compute this ε′ as
follows. Let us denote the µ(n − s, r, q) for the probability that there is a r-
multicollision among q uniformly and independently chosen (n− s)-bits. Now it

is easy to see that µ(n−s, r, q) ≤
(q

r)
2(n−s)(r−1) . Now we choose r = n−s and hence

µ(n−s, r, q) ≤ (q/2n−s−1)r ≤ q/2n−s−1 if q ≤ 2n−s−1. Since chop(S(·)) and R(·)
uniformly and independently distributed over {0, 1}n−s, a (n − s)-good view is
obtained by AS,R with probability at least 1 − q/2n−s−1, where q = q1 + q2.
Therefore, we can choose ε′= q/2n−s−1 when r = n − s.

Now, by using proposition 1 and 2 and strong interpolation theorem we
obtain our following main theorem of the section. Here, ε∗ = ε + ε′.



Theorem 3. The chopMD construction is (tA, tS , q, σ, ε∗)-indifferentiable from
a random oracle, in the random oracle model for the compression function, for

any tA, with tS = ℓ ·O(q2) and ε∗= (3(n−s)+1)q2+(n−s)q1

2s + q
2n−s−1 + σ2

2n+1 =O(nq
2s +

q
2n−s + σ2

2n ), where q = q1 + q2.

4 chopDBL hash functions and its security analysis

A r-multicollision for a hash function H is a r-set {X1, · · · , Xr} such that
H(X1) = · · · = H(Xr). In [8] it is shown that the r-multicollision can be found in
the classical MD hash function in roughly 2n/2 complexity. For a random oracle
it needs [14] roughly 2n(r−1)/r complexity. Moreover, Kelsey-Schneier [9] found a
second preimage attack which needs roughly 2n/2 queries for classical MD hash
function. But for a random oracle to have a second preimage attack we need at
least 2n queries. Thus MD hash function is not good in terms of multicollision
and second-preimage attack. Lucks designed a wide pipe hash which is secure
against these attacks.

We first define Lucks wide pipe design. In his design let F : {0, 1}w+b →
{0, 1}w and g : {0, 1}w → {0, 1}n be two independently distributed random ora-
cles. The wipe pipe hash [10] is defined as g(MDF (M)) for any padded message
M . In [10], it was shown that

– the second preimage attack for the wide pipe hash needs min{2w/2, 2n} com-
plexity.

– the k-multicollision for the wide pipe hash needs min{2w/2, 2n} complexity.

Here we show that the random oracle assumption of g is redundant. More
precisely, we obtain almost similar bound when g is a simply chop function. Thus
we define a chopDBL hash function as

chopDBLF (m1, · · · , mℓ) = chopn(MDF (m1, · · · , mℓ)).

One can compute F : {0, 1}2n+b → {0, 1}2n based on two independent random
oracles f1, f2 : {0, 1}2n+b → {0, 1}n as F (X) = f1(X) ‖ f2(X). As shown in
the last section, we have an improved security analysis for chopMD. By using
Theorem 3 we know that chopnMDF is 2n/(3n + 1)-indifferentiable secure.

Theorem 4. The chopDBL construction is (tA, tS , q, σ, ε)-indifferentiable from
a random oracle, in the random oracle model for the compression function, for

any tA, with tS = ℓ · O(q2) and ε = O(nq
2n + q

2n + σ2

22n ).

The above theorem says that to have an indifferentiability attack we need at
least 2n/(3n+1) query complexity (the number of message blocks queried). Thus,
if we can have second preimage attack of chopDBL with q query complexity then
q ≥ 2n/(3n + 1). Otherwise we can distinguish chopDBL from a random oracle
with less queries than 2n/(3n+1). A similar argument shows that r-multicollision
attack needs at least minimum of 2n(r−1)/r and 2n/(3n+1) queries. Thus in the
random oracle model our new design of hash function is almost optimally secure
(with respect to second preimage and multicollision).



5 Conclusion

In this paper, we present an improved security analysis for chopMD. This im-
proved security analysis helps us how to get security beyond the birthday barrier.
More precisely, we design an n-bit wide pipe hash function which has security
level close to 2n and hence we have beyond birthday barrier. The new design is
much simpler and efficient. It would be interesting to see whether it preserves
other properties more particularly, second preimage security.
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Appendix.

Proof of Lemma 1. Let D be the set of all elements from ({0, 1}b)+ whose
MDf values are determined from the relations f(x1, m1) = z1, · · · , f(xq2 , mq2)
= zq2 . Since v is irreducible, Mi 6∈ D for all 1 ≤ i ≤ q1. Let P denotes the set of
all nonempty prefixes of Mi’s. More precisely,

P = {M ∈ ({0, 1}b)+ : M is a prefix of Mi for some 1 ≤ i ≤ q1}.

We enumerate the set P \ (D ∪ {M1, · · · , Mq1}) := {N1, · · · , Nσ′}. Note that,
|P | ≤

∑
i ||Mi||. Now, we have

σ = q2 +
∑

i

||Mi|| ≥ q2 + |P | ≥ q2 + σ′ + q1 := σ′′,

where σ is the total number of message blocks queried. Now we choose σ′ dis-
tinct elements z′1, · · · , z′σ′ ∈ {0, 1}n which are distinct from xi’s and IV. These
values will be assigned as intermediate outputs of f during the computation of
MDf (Mi)’s. We can choose such z′i’s in at least P(2n − q2 − 1, σ′) ways. Now
given any such choices of z′i’s we count the number of functions f such that

1. f(x1, m1) = z1, · · · , f(xq2 , mq2) = zq2 ,

2. MDf (M1) = h1, · · · , MDf (Mq1) = hq1 and

3. MDf (N1) = z′1, · · · , MDf (Nσ′) = z′σ′ .

Claim : relation 1,2,3 ⇔ relation 1 and f(a1) = h1, · · · f(aq1) = hq1 , f(a′
1) =

z′1, · · · , f(a′
σ′) = z′σ′ , where (xi, mi)’s, ai’s and a′

i’s are all distinct. Moreover, the
values of ai’s and a′

is are completely determined from the tuples v=((x1, m1, z1),



· · · , (xq2 , mq2 , zq2), (M1, h1), · · · , (Mq1 , hq1)) and (z′1, · · · , z′σ′). More precisely,
ai = (ci, last(Mi)) where

ci = z′j if cut(Mi) = Nj

= IV if cut(Mi) = λ

= hj if cut(Mi) = Mj

= zj if MDf (cut(Mi)) = zj is determined from the relation 1

Similarly, a′
i = (c′i, last(Ni)) where

c′i = z′j if cut(Ni) = Nj

= IV if cut(Ni) = λ

= hj if cut(Ni) = Mj

= zj if MDf (cut(Ni)) = zj is determined from the relation 1

From the above discussion it is clear that the relations 1,2 and 3 equivalently
correspond to the σ many distinct input-outputs of f . Thus the number of

functions f satisfying 1,2 and 3 is exactly 2n(2n+b−σ′′) where σ′′ = q1 + q2 + σ′.

By multiplying the number of choices of z′is with 2n(2n+b−σ′′), we obtain the
number of functions satisfying 1 and 2 is at least

2n(2n+b−σ′′)×P(2n−q2−1, σ′) ≥
|F|

2n(q1+q2)
×(1−

(σ′ + q2 + 1)2

2n+1
) ≥

|F|

2n(q1+q2)
×(1−

σ2

2n+1
).

This follows from ineq-2 (stated in the beginning of the section). This proves
the first part. The second part is trivial from the first part since u has uniform
distribution on F and hence we need to divide the above quantity by |F|.

Proof of Lemma 2. We denote ℓi as the number of pairs (xk, mk) such that
chop(xk) = yi. More precisely, ℓi = |{k : 1 ≤ k ≤ q2, chop(xk) = yi}|. Since yi’s
are distinct, ℓ1 + · · ·+ ℓt ≤ q2. Now we choose wi

j ∈ {0, 1}s, 1 ≤ j ≤ ri, 1 ≤ i ≤ t
such that

hi
j = (wi

j ‖ yi)’s are distinct and also distinct from xi’s and IV. (A)

The number ways we can choose wi
j ’s satisfying the above condition (A) is

at least

I1 := (2s − ℓ1 − 1)(2s − ℓ1 − 2) · · · (2s − ℓ1 − r1) · · · (2
s − ℓt − 1) · · · (2s − ℓt − rt).

We can choose w1
1 in 2s − ℓ1−1 ways as there are ℓ1 many xk’s with chop(xk) =

y1 and chop(IV) can be equal to y1. After choosing w1
1 we can choose w1

2 in
(2s − ℓ1 − 2) ways and so on. Now, after choosing all w1

1 , · · · , w1
ℓ1

we can choose

w2
1 in 2s − ℓ2− 1 ways since y2 6= y1 and so on. Thus we have I1 many wi

j ’s with
the condition (A). A straight forward simplification shows that I1 ≥ 2sq1(1 −
r(q1 + q2)/2s) (we use the relations

∑
i ℓi ≤ q2, ri ≤ r and

∑
i ri = q1). Now



for any fixed such choice of wi
j ’s, the values hi

j ’s are distinct from xi’s and IV.
Thus, the tuple

v = ((x1, m1, z1), · · · , (xq2 , mq2 , zq2), (M1
1 , h1

1), · · · , (M1
r1

, h1
r1

), · · · ,
(M t

1, h
t
1), · · · , (M t

rt
, ht

rt
))

is irreducible. Hence the number of functions f ∈ Func(n + b, n) such that

1. f(x1, m1) = z1, · · · , f(xq2 , mq2) = zq2 and

2. MDf (M1
1 ) = h1

1, · · · , MDf (M1
r1

) = h1
r1

, · · · , MDf (M t
1) = ht

1, · · · , MDf (M t
rt

)
= ht

rt

is at least |F|

2n(q1+q2) ×(1− σ2

2n+1 ) (by using Lemma 1). So, the number of functions
satisfying the relation in this lemma is at least

|F|

2n(q1+q2)
× (1 −

σ2

2n+1
) × 2sq1(1 −

r(q1 + q2)

2s
) ≥ |F| ×

1 − ∆

2nq2+(n−s)q1
,

where ∆ = r(q1+q2)
2s + σ2

2n+1 . The second part is followed from the first part.


