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Abstract. We present an efficient simultaneous broadcast protocol ν-SimCast
that allows n players to announce independently chosen values, even if up to
t < n

2
players are corrupt. Independence is guaranteed in the partially syn-

chronous communication model, where communication is structured into rounds,
while each round is asynchronous. The ν-SimCast protocol is more efficient than
previous constructions. For repeated executions, we reduce the communication
and computation complexity by a factor O(n). Combined with a determinis-
tic extractor, ν-SimCast provides a particularly efficient solution for distributed
coin-flipping. The protocol does not require any zero-knowledge proofs and is
shown to be secure in the standard model under the Decisional Diffie Hellman
assumption.

1 Introduction

1.1 The Simultaneous Broadcast Problem

Simultaneous broadcast allows n participants to simultaneously announce indepen-
dently chosen values. It is useful in many applications such as auctions or coin-flipping,
and is in fact a generic building block for any distributed protocol with an honest ma-
jority [16]. While this goal is trivial to achieve in a perfectly synchronous network
where messages from all participants are broadcast at exactly the same moment, such
a communication model itself is infeasible in practice. Instead, it is common to assume
a partially synchronous network [6, 14, 15], where communication is divided into syn-
chronized rounds, while every round is asynchronous, i.e., messages in a given round
may arrive at any given moment within a time frame allocated to that round. Thus, in
a partially synchronous network, every announced message may be chosen depending
on all previously broadcast messages, including earlier messages received in the same
round.

Consider the example of contract bidding where n players participating in a sealed
bid auction wish to announce their bids in a “blind” way, such that the bids are revealed
only once the auction is closed. In the partially synchronous model, simply announcing
the messages in cleartext violates the requirement of blind bidding and allows the player
speaking last to place the winning bid. At first sight, it seems sufficient to commit to
a bid and only open the commitment after the bidding period has elapsed. However,
if Alice and Bob are competing players, then after seeing Alice’s message, Bob may



be able to create a related bid even if the commitment scheme is hiding. For example,
Bob may simply copy Alice’s message and thus guarantee that their bids are equal. In
cryptography, such an (often undesirable) property is called malleability [9], and the
attack is known as a rushing attack.

Secondly, it is often desirable that participants are bound to their commitments. If
Alice and Bob use non-malleable commitments, Bob is not able to use the rushing at-
tack to create a related bid.3 He could, however, decide not to decommit at all after
seeing Alice’s bid, if the outcome is not to his favour. Thus, we need a simultaneous
broadcast protocol that is both non-malleable—participants cannot choose their con-
tribution based on other players’ choices—and robust—nobody can pull out their con-
tribution. Combined, this property is known as independence. Simultaneous broadcast
protocols have many applications beyond contract bidding (see Sect. 4), and several
solutions have been proposed to achieve independence in partially synchronous com-
munication [6, 14]. However, previous protocols require each party to broadcast O(n)
messages and perform O(n2) computation, so some authors use more efficient custom
protocols for specific tasks such as coin-flipping [10]. In contrast, we propose a new
generic simultaneous broadcast protocol that is particularly efficient in repeated runs.

1.2 Previous Work

The notion of non-malleability in cryptographic primitives was put forth by Dolev et
al. [9]. In particular, non-malleable commitment schemes exhibit the property that,
given a commitment Com(a), it is difficult to produce a commitment Com(b) to a re-
lated value b. More precisely, we require that if an adversary is capable of creating a
commitment Com(b) satisfying some relation R(a, b) then he is equally successful in
creating such commitments without seeing Com(a) at all. Liskov et al. also introduced
the notion of mutually independent commitments [19]; however, they propose a solu-
tion for the two-party setting, whereas we are interested in the multi-party case.

Recall that non-malleability alone does not provide independence since, after see-
ing honest players’ values, malicious players may refuse to open their commitments.
To ensure robustness in distributed computations, several authors have proposed to use
verifiable secret sharing (VSS) to “back up” values. Rabin [21] and Gennaro et al. [15]
propose to use additive (n-out-of-n) sharings of a joint secret key. Such an approach
yields particularly efficient protocols for distributed signatures. For example, if an RSA
signing key d is shared amongst n players as d = d1+· · ·+dn, then each player’s contri-
bution to the signature md mod N on message m is computed simply as mdi mod N .
The novelty lies in the clever use of VSS to obtain robustness. Namely, they have ev-
ery player verifiably share di of the key according to a (t, n)-threshold scheme. This
assures that honest players can restore the contributions of failed players.

The idea of using VSS as back-up has since become quite well known. Returning to
the case of commitments, the simple auction protocol can be made robust by having ev-
ery participant VSS the committed value, as put forth by Gennaro [14]. We can thus en-
force that all commitments are opened in the second round: if some player aborts, other

3 The traditional notion of non-malleability does not, however, preclude exact copying of the
commitment, so extra care must be taken to thwart the “copycat” attack.



players can open his commitment by reconstructing the shared value. Notice though that
as opposed to the case of threshold signatures, Gennaro’s broadcast protocol requires
a new run of VSS for every round of broadcast, and additional zero-knowledge (ZK)
proofs to ensure that the value under the non-malleable commitment is identical to the
secret-shared value. We note that Pedersen’s verifiable secret sharing [20] could also
be used to provide simultaneous broadcast. This solution would eliminate ZK-proofs
but not the communication overhead induced by verifiable secret sharing, and would be
computationally heavier due to the use of Pedersen commitments.

1.3 Our Contribution

In many applications, the same set of parties need to perform multiple simultane-
ous broadcasts. For example, distributed statistical databases [10] require simultaneous
broadcast for every database query. We present the first simultaneous broadcast protocol
that significantly optimizes communication and computation cost for multiple invoca-
tions. Namely, in all previous solutions, verifiable secret sharing is required in every
invocation of the protocol, even if the previous run was error-free. This means that each
party has to broadcast more than t verification values and perform about tn exponen-
tiations for verification. In contrast, we propose a new broadcast protocol ν-SimCast
that requires one run of VSS in the initialization phase, after which multiple (ν) runs of
broadcast can be carried out extremely efficiently. An error-free execution requires only
two rounds, during which each party broadcasts only one ciphertext and its decryption.
Consequently, computation cost drops by t/2, since each party now needs to compute
only 2n exponentiations. For t ≈ n/2, we have order n gain in both computation and
communication. In particular, even though ν-SimCast is optimized for repeated execu-
tion, 1-SimCast (a single execution of the protocol with ν = 1) is no less efficient than
previous solutions. Table 1 (Section 3.5) compares the performance of simultaneous
broadcast protocols.

Our protocol does not require any zero-knowledge proofs and is thus proven secure
in the standard model (Thm. 1). This makes ν-SimCast suitable for coin-flipping, since
players do not need common (known in advance) randomness for non-interactive ZK-
proofs to produce common (unpredictable) randomness as protocol output. We achieve
this by combining Gennaro’s idea of using semantically secure encryption for commit-
ment with Rabin’s idea of backing up secret keys through VSS. Our protocol achieves
independence of outputs (following the definition by Gennaro [14]) with a reduction
to the semantic security of ElGamal. We note that ElGamal can be substituted with
any other semantically secure encryption scheme under somewhat stronger assump-
tions (the common random string model, or trusted setup).

In Section 3.4, we argue that ν-SimCast allows participants to broadcast multi-
ple announcements in parallel. In addition to the broadcast function, we show how
ν-SimCast can be used to generate random values (Cor. 1 in Sect. 3.3). In Section 4, we
discuss how to optimize ν-SimCast even further to efficiently obtain random bits rather
than random group elements. These results provide a particularly efficient coin-flipping
algorithm for e.g. the distributed databases example described above.



2 Preliminaries

2.1 Communication and Adversary Model

We consider a network of n players P = {P1, . . . , Pn}. The players are pairwise con-
nected through private point-to-point links and have access to a reliable public broad-
cast channel. Messages sent via this channel are reliably delivered to all participants,
i.e. all parties receive the same message. The existence of reliable broadcast channels is
a common assumption for cryptographic protocols [6, 14].

Private point-to-point links can be simulated by using encryption on the public chan-
nel. If physical broadcast channels are not available, they can be implemented with
special broadcast protocols [3, 18]. However, reliable broadcast is costly when imple-
mented on realistic networks such as the Internet. The protocol of Cachin et al. has
message complexity O(n2) when run amongst a group of n parties and is “only” prob-
abilistic, i.e., it introduces a small error probability.

In our setting we allow the adversary A to corrupt an arbitrary set of t < n/2 play-
ers. Corrupt players can act in any way during protocol execution, including protocol
violation and early abort. The adversary is considered to be static, i.e., the set of corrupt
players is fixed before the protocol execution. A special broadcast protocol further re-
stricts the corruption tolerance to t < n/3, although it is possible to keep the resilience
at t < n/2 under certain additional assumptions (e.g., the existence of a PKI) [18].

We structure the communication in rounds, and model delay in the transmission
of messages by assuming partially synchronous communication. In contrast to the per-
fectly synchronous model where all messages in a given round are delivered simultane-
ously, the partially synchronous model allows an arbitrary delay within each round. In
practice, such a model can be implemented by using synchronized clocks: if a partici-
pant does not finish its operations during a predefined time frame, he is disqualified from
further processing. In a way, the partially synchronous communication model augments
the adversary’s power by allowing to fix the delay of messages sent by corrupt parties.
As a consequence, a protocol that claims to be secure in the partially synchronous model
has to withstand an adversary that speaks last in each round and incorporates all infor-
mation learned from all honest parties in the same as well as previous rounds.

2.2 Cryptographic Components

In the following, we use the concept of a negligible function ε(k) to express that for
every constant c ≥ 0 there exists an integer kc such that ε(k) < k−c for all k ≥ kc.

Semantically secure encryption. We model public key encryption as a triple of prob-
abilistic polynomial-time algorithms Gen, Enc and Dec for key generation, encryption
and decryption, respectively. Intuitively, a public key encryption scheme is said to be
semantically secure if a ciphertext does not reveal any information on the encrypted
message other than what is known a priori. This is formalized as a game Sem-Sec
where the adversaryA has to guess a bit b corresponding to the correct plaintext. LetR
be the appropriate domain of randomness:



Sem-Sec[k] :
(pk, sk)← Gen(1k);
(state,m0,m1)← A(pk);
b← {0, 1}; r ← R;
c← Encpk(mb, r);
output A(state, c);

The semantic security of the scheme is then quantified by the adversary’s success prob-
ability.

Definition 1. A public-key encryption scheme (Gen,Enc,Dec) is said to be semanti-
cally secure if for any probabilistic, polynomial-time bounded adversary A the advan-
tage ε(k) = Pr[Sem-Sec[k] = b]− 1

2 is negligible in the security parameter k.

In our construction, we explicitly require that the encryption scheme is committing,
i.e., no two different messages encrypt to the same ciphertext under the same public
key.

ElGamal encryption. Let p and q|p − 1 be primes. Let g ∈ Z∗p be the generator
of a cyclic group G of prime order q. Recall that given a secret key x ∈ Zq and the
corresponding public key y = gx, a (randomized) ElGamal encryption of a message
m ∈ G is a tuple c = (gr, yrm), where r ∈ Zq is chosen uniformly at random. The
semantic security of the ElGamal scheme is equivalent to the Decisional Diffie-Hellman
assumption [23]. ElGamal is a committing encryption scheme: given an ElGamal public
key y, one can commit to a message m by Com(m) = c = (gr, yrm) and decommit
by revealing (r, m). Naturally, the same commitment can also be opened by anyone
who knows the secret exponent x. This property will be crucial for us in achieving
robustness.

Verifiable Secret Sharing. In a (t, n)-threshold secret sharing scheme, a dealer D
shares a secret s amongst a group of players P = {P1, . . . , Pn} during the Share phase
by sending a share si to Pi. In the Recover phase, a group of at least t + 1 players
can reconstruct the secret s, using their shares si. Unfortunately, simple secret shar-
ing suffers from two drawbacks: first, a corrupt dealer can easily distribute inconsistent
shares. Second, other share-holders cannot detect a corrupt share-holder Pj presenting
a fake share s′j in the Recover-phase. A verifiable secret sharing scheme (VSS) solves
both problems by adding a third primitive Verify that allows parties to verify the con-
sistency of sharing and recovery. As an inherent property, VSS guarantees that if D is
not disqualified during the sharing process, then any set of t + 1 shares of honest par-
ties define the same unique secret s (except with possibly a neglible error probability).
Unless mentioned otherwise, we assume that the reconstruction error is zero.

Feldman VSS. Feldman’s VSS scheme [11] builds on Shamir secret sharing [22] and
consists of the following phases (omitting some details of error handling):



– Share: Let G be a cyclic subgroup of prime order q with generator g. To share a
secret s, the dealer chooses a polynomial f(x) = a0+a1x+· · ·+atx

t, ai>0 ∈R Fq

over the field Fq with a0 = s and degree t. The dealer sends each party Pi the share
si = f(i).

– Verify: The dealer broadcasts commitments A0 = ga0 , A1 = ga1 , . . . , At = gat

and each player Pi verifies gsi
?=

∏t
j=0(Aj)ij

.
– Recover: Given a set of t + 1 shares si = f(i), one can reconstruct the polynomial

and find the secret free coefficient s by employing Lagrange interpolation. The
validity of each submitted share can be verified as above.

In Feldman’s VSS, a cheating dealer will always be caught. Finally, we will need
the following result, stating that the scheme is perfectly simulatable:

Proposition 1. Given any t shares of a secret s and the public value gs, there exists an
efficient simulator S that produces an outcome of the Share phase that is identical to
the real execution of the Share phase.

The simulation property shows that an adversary, controlling up to t participants, can
compute consistent verification values Ai, i = 1, . . . , t himself. Thus, Feldman’s VSS
leaks no information about the secret beyond what is implied by the public value gs.

Note that it is not know how to construct such a simulator for an adaptive adversary
that may only corrupt some players at a later point. Thus, we present all security claims
in the static adversary setting. In order for our protocol to achieve security against an
adaptive adversary, one would first have to address the adaptive security of Feldman
VSS [1].

Pedersen VSS. Compared to Feldman’s VSS, Pedersen’s scheme requires an additional
element h ∈ G (presumably generated by a trusted party during parameter setup) such
that the discrete logarithm logg h is kept secret. The sharing goes as follows:

– Share: To share a secret s, the dealer D now generates two degree t polynomials
f(x) = a0 + a1x + · · ·+ atx

t and g(x) = b0 + b1x + · · ·+ btx
t, where a0 = s,

and hands each participant two shares si = f(i) and s′i = g(i).
– Verify: The dealer broadcasts commitments Ai = gaihbi for i = 0, . . . , t. and each

player Pi verifies gsihs′i
?=

∏t
j=0(Aj)ij

.
– Recover: Given a set of t + 1 shares si = f(i), one can reconstruct the polynomial

f and find the secret free coefficient s by employing Lagrange interpolation. The
validity of each share can be verified as above, by having parties broadcast both
shares si and s′i.

Pedersen VSS assumes that a cheating dealer cannot solve the discrete logarithm
problem. On the other hand, the next result shows that it guarantees unconditional pri-
vacy of the secret (while the privacy of Feldman’s scheme is computational). More
precisely, the adversary’s view and thus actions are independent of the secret [20]:

Proposition 2. For any (computationally unbounded) adversary A corrupting at most
t parties and any view viewA,

Pr[D has secret s|viewA] = Pr[D has secret s] .



3 The Simultaneous Broadcast Protocol ν-SimCast

3.1 The Basic Protocol

Our n-party protocol ν-SimCast allows each player Pi to announce a value ui, such that
the values announced by corrupt players are independent of the values announced by
honest players. We divide the protocol into two phases: the Setup phase is executed only
once, after which the SimCast phase can be iterated ν times sequentially or in parallel
to announce ν values (where ν = ν(k) is polynomial in the security parameter). The
protocol has maximum possible fault tolerance: it remains secure if up to t < n/2
players are controlled by an adversary.

We first present a version of ν-SimCast using ElGamal encryption and Feldman’s
VSS. For simplicity, we also assume that all players use the same cyclic subgroup G of
prime order q with generator g. In Section 3.2, we discuss other possible instantiations.

Informally, the protocol works as follows. In the Setup phase, each player generates
a key pair (xi, yi) for ElGamal and shares the secret key xi amongst all players using
(t, n) Feldman VSS. The SimCast phase consists of only two rounds of broadcast fol-
lowed by fault handling:

1. Each player Pi broadcasts an ElGamal encryption ci = (gri , yri
i ui), where ui ∈ G

and ri ← Zq is the encryption randomizer;
2. Each player Pi reveals (u′i, r

′
i). If the revealed values do not match, i.e., ci 6=

(gr′i , y
r′i
i u′i), players run the Recover phase of the VSS scheme to recover ui.

ν-SimCast[t, n,G, g, k]

I. Setup:
1. Share: Each party Pi generates an ElGamal key pair (xi, yi) and verifiably

shares the secret key xi using (t, n) Feldman-VSS. The public key yi = gxi

is broadcast as a verification value during the Share phase.
2. Verify: Each party Pj verifies each share. If verification fails for some party

Pi, Pj broadcasts a complaint against Pi.
3. For each complaint, Pi (as a dealer) reveals the correct share. Parties who re-

ceive more than t complaints or fail to deliver correct shares are disqualified.
Each party builds the set of qualified parties QUAL ⊆ P .

II. SimCast (ν iterations):
Each party Pi ∈ QUAL publishes an announcement ui:

1. Encrypt: Each party Pi ∈ QUAL wishing to announce ui chooses a
random value ri ← Zq and broadcasts a ciphertext

ci = (gri , yri
i ui) .

If some party Pi does not broadcast a ciphertext, he is disqualified and
his output is set to ui = ⊥.

2. Decrypt: For every published ci, the party Pi broadcasts the decryption
(u′i, r

′
i).



3. Recover: Each party Pj verifies the decryption values of each other party

Pi by checking that ci
?= (gr′i , y

r′i
i u′i). If verification fails for some Pi,

parties run Recover to reconstruct the secret key xi and compute the
decryption ui = Decxi(ci). Players who failed to deliver a valid de-
cryption message are disqualified from the next iterations and the set
QUAL is updated.

Figure 1: Simultaneous broadcast protocol ν-SimCast

Notice that it is also possible to decrypt the contribution of a corrupt player Pi with-
out revealing his personal secret key xi by using standard threshold decryption tech-
niques. This may be useful if the adversary model includes fail-corruptions [12], where
players are simply unavailable from time to time. As a drawback, ElGamal threshold
decryption requires additional ZK-proofs to verify the validity of decryption shares.

For efficiency reasons, we may also allow parties not to contribute an announce-
ment in an iteration of SimCast, as long as they faithfully participate in verification
and reconstruction. Such a behavior can easily be integrated in our security analysis.
Some applications such as coin-flipping do however require everyone to participate
(see Cor. 1).

3.2 Generalizing ν-SimCast for Other Cryptosystems

The instantiation of the ν-SimCast protocol using ElGamal encryption and Feldman
VSS is particularly efficient: it does not require any zero-knowledge proofs and can
be proven secure in the standard model. The fact that verifiably shared keys are never
combined to a single threshold encryption/signing key allows us to use simple Feldman
verifiable secret sharing in the Setup phase instead of the less efficient Pedersen VSS.

In principle, one could instantiate ν-SimCast, using any semantically secure com-
mitting encryption scheme and any suitable VSS scheme. However, the efficiency of
ν-SimCast relies on the discrete-log setting in one intricate detail: we must ensure that
the verifiably shared secret key indeed corresponds to the player’s public key. Feldman
VSS for ElGamal keys solves this problem automatically, since the public key gxi is
broadcasted as a verification value during the Share phase and all players check that
their received shares are consistent shares of the secret key xi. This may require addi-
tional zero-knowledge proofs, and thus we may have to give up the standard model. Al-
ternatively, one may assume trusted setup, which is a reasonable assumption in settings
where malicious faults are expected to be relatively rare. Even under those assumptions,
our scheme is likely to be more efficient than the previous protocol [14], which requires
complex zero-knowledge proofs during every iteration (see Section 3.5 for details).

3.3 The Security of ν-SimCast

First, a secure simultaneous broadcast protocol should satisfy the basic properties of
broadcast: the protocol outcome is consistent for all honest parties and each honest party
correctly receives the announcement of each other honest party. In addition, we require



independence: for each iteration of SimCast, there should be no correlation between the
announcements of corrupt parties and the announcements of honest parties.

Let A be a static polynomially bounded adversary that corrupts at most t out of the
n parties and coordinates their action. Denote by B the subset of corrupt parties and
set G = P\B. Consider one iteration of SimCast. Let uj ∈ G be the group element
that Pj announces and let ui,j ∈ M = G ∪ {⊥} be the value that Pi receives as Pj’s
announcement. Set

−→
Ui = (ui,1, . . . , ui,n), i.e.,

−→
Ui is the announcement vector received

by Pi in one iteration of SimCast.
Our security definition of a simultaneous broadcast protocol is based on the def-

inition introduced by Gennaro [14]. The latter requires that the output of any single
corrupt party should be uncorrelated with the output of honest parties. Hevia and Mic-
ciancio [17] note that this definition does not capture the collaboration of corrupt par-
ties, and bring an (admittedly artificial) example of a protocol that satisfies Gennaro’s
definition, but allows two corrupt parties to output values whose XOR is correlated to
the output of honest parties. Thus, we modify the definition of independence to require
that not only the output of a single corrupt party should be independent of the output of
honest parties but also that there is no correlation between the announcement vector of
any subset of corrupt and honest parties.

For each iteration of SimCast the following properties have to hold:

Consistency: For any A, and for any pair of honest players Pi, Pj the probability
Pr[
−→
U i 6=

−→
U j ] is negligible in the security parameter k.

Correctness: For any A and for any pair of honest players Pi, Pj the probability
Pr[ui,j 6= uj ] is negligible in k.

Independence: For anyA, for any subset of corrupt players Q ⊆ B, for all−→m ∈M|Q|

and all −→u ,−→v ∈ Gn−t, we have that

|pQ
−→m,−→u − pQ

−→m,−→v | ≤ ε(k), (1)

where −→u ,−→v are the announcements of honest players, ε is a negligible function of
k and

pQ
−→m,−→u = Pr[Players in Q announce −→m|−→u ]

denotes the probability that corrupt players in Q announce vector −→m, given that honest
players have announced −→u .

Intuitively, the independence property of ν-SimCast follows from the fact that each
player Pi must know the value ui he chose to broadcast. Indeed, since Pi has verifiably
shared his secret key xi, he can always compute the decryption of the published value
ci. In approaches that combine non-malleable commitments with VSS-ing the value
under commitment, complex ZK-proofs are required to ensure that the shared value is
identical to the one under commitment. In contrast, knowledge of the secret key acts
as an implicit proof of knowledge of the encrypted value and no additional proofs are
required. We proceed to give a formal security proof.

Theorem 1. Let t < n
2 . If the Decisional Diffie-Hellman assumption holds in group G,

then ν-SimCast[t, n,G, g, k] is a simultaneous broadcast protocol.



Proof. First, notice that in each iteration all honest parties use the same set QUAL, as
disqualification of parties is done solely based on public information. In the following
we set B = (P ∩QUAL)\G. It is easy to see that honest players are never disqualified.

Let Pi, Pj ∈ G. If P` ∈ G, then ui,` = uj,` = u`, since P` publishes the correct
unique opening of c`. If P` ∈ B then there are two options. First, P` does not broadcast
c`. In this case ui,` = uj,` = ⊥. Second, P` publishes a ciphertext c` but fails to decrypt
it in Step 2. Since there are at least t + 1 honest parties, the Recover-procedure of
Feldman-VSS allows to reconstruct the unique value u` corresponding to c`, so ui,` =
uj,` = u`. This shows consistency and correctness.

The independence property is proven by reduction to the DDH assumption, or
equivalently, the semantic security of ElGamal. Suppose that an adversary A, given
a security parameter k, achieves advantage ε = ε(k). We build a second adversary A′
that wins the semantic security game Sem-Sec[k] with a related advantage ε′, showing
that ε(k) must be negligible in k.

Assume that A corrupts t parties (wlog B = {Pn−t+1, . . . , Pn}) and that for at
least one iteration s ∈ [1, ν] there exist two vectors −→u ,−→v ∈ Gn−t, a subgroup Q ⊆ B,
and an announcement of corrupt parties −→m ∈ M|Q| such that |pQ

−→m,−→u − pQ
−→m,−→v | > ε in

iteration s. We use a similar hybrid argument as in [14]. Namely, for the vectors −→u and
−→v in iteration s, define hybrids −→u (`) = (v1, . . . , v`, u`+1, . . . un−t) for ` ∈ [0, n − t].
Clearly, −→u (0) = −→u and −→u (n−t) = −→v . Now,∣∣∣pQ

−→m,−→u − pQ
−→m,−→v

∣∣∣ =

∣∣∣∣∣
n−t∑
`=1

(pQ
−→m,−→u (`−1) − pQ

−→m,−→u (`))

∣∣∣∣∣ ≤
n−t∑
`=1

∣∣∣pQ
−→m,−→u (`−1) − pQ

−→m,−→u (`)

∣∣∣ ,

so there must exist an index j for which

|pQ
−→m,−→u (j−1) − pQ

−→m,−→u (j) | >
ε

n− t
. (2)

Wlog assume that pQ
−→m,−→u (j−1) −pQ

−→m,−→u (j) > ε
(n−t) (otherwise we simply modifyA′ such

that it flips the output of A). Note that the hybrids −→u (j−1) and −→u (j) differ only in
position j, where the corresponding values are uj and vj .

As specified in the game Sem-Sec,A′ gets as input a challenge public key ŷ. We let
A′ choose m0 = uj and m1 = vj as the two messages. A′ then obtains the challenge
c = Encŷ(mb, r), where b ← {0, 1} and r is a random value. Now, A′ runs A. In the
following, A′ has to perform the steps of the protocol on behalf of the honest players G
and simulate the view of A:

1. For the simulation of the Setup phase,A′ follows the protocol instructions for each
player Pi ∈ G\{Pj}, i.e., he generates a key pair (xi, yi) and shares xi. For Pj , A′
deals t random shares to A and runs the simulator S from Proposition 1 on input
yj = ŷ to publish the challenge public key ŷ and appropriate verification values.

2. For iterations 1, . . . , s − 1, s + 1, . . . ν of SimCast, A′ simply follows protocol
instructions. That is, for all honest players Pi ∈ G, A′ broadcasts a ciphertext ci

and its decryption.
3. For iteration s, A′ follows the protocol instructions for all parties Pi ∈ G\{Pj}

using as announcement the appropriate value from the hybrid vector −→u (j). For Pj ,
it publishes the challenge ciphertext c.



Since A′ controls more than t parties, for all Pi ∈ B that have not been disqualified
it has received t + 1 shares of xi in the Setup phase. This allows A′ to decrypt Pi’s
encrypted announcements ci and obtain ui. Let−→u Q be the announcements of the parties
in Q. If −→u Q = −→m then A′ outputs b′ = 0; otherwise it outputs b′ = 1.

First, we have to show that the simulation is indistinguishable from a real run of
ν-SimCast.

Ad. 1: For all parties Pi ∈ G\{Pj} our adversary A′ follows exactly the protocol
description. For Pj , A′ uses the simulator S of Proposition 1 which produces a
distribution that is identical to the distribution of a real execution.

Ad. 2: The simulation of iterations 1, . . . , s− 1, s + 1, . . . ν(k) of SimCast is done as
described in the protocol. Thus, both distributions are identical.

Ad. 3: A′ simply follows the protocol, using announcements from hybrid j − 1 (if
b = 0) or hybrid j (if b = 1).

It remains to show that A′ breaks the semantic security with a sufficiently large
advantage ε′:

ε′ = Pr[Sem-Sec[k] = b]− 1/2 = Pr[b′ = b]− 1/2

=
Pr[b′ = 0|b = 0] + Pr[b′ = 1|b = 1]

2
− 1

2
.

Notice that Pr[b′ = 0|b = 0] = pQ
−→m,−→u (j−1) and Pr[b′ = 1|b = 1] = 1 − pQ

−→m,−→u (j) , so
from above we get

ε′ =
pQ
−→m,−→u (j−1) + 1− pQ

−→m,−→u (j)

2
− 1

2
>

ε

2(n− t)
.

ut

The following corollary shows that ν-SimCast can be used for fair coin-flipping.
We discuss this application in detail in Section 4.

Corollary 1. Let A corrupt at most t < n/2 parties. If ν-SimCast[t, n,G, g, k] is used
to announce values ui ← G chosen uniformly at random, then the product u =

∏n
i=1 ui

is also random in G.

Proof. The product u =
∏n

i=1 ui contains the random announcement uj of at least one
honest party Pj , which by Thm. 1 is independent from the announcements of corrupt
parties. Thus, u is a random group element. ut

3.4 Parallel Execution of SimCast

Up to this point, we have considered the security of ν-SimCast in a strictly sequential
communication model. This means that parties first execute the Setup phase and then
sequentially execute ν iterations of SimCast. However, when our protocol is executed
in a real-world network such as the Internet, it is often advantageous when instances of
the protocol can be run in parallel. Unfortunately, parallel execution of protocols often



rounds comm. broad. exponent. rand. elem. model sec.
Gennaro-00 [14] 5 ≈ n + t + 160 ≈ t + 160 ≈ nt + 160n t + 1 CRS DDH
Pedersen-VSS [20] 3 2n + t + 1 t + 1 ≈ nt 2t + 1 standard DL
SimCast (setup) 2 n + t t + 1 ≈ nt t

standard DDHSimCast (iter) 2 4 4 2n 1
1-SimCast 4 n + t + 4 t + 5 ≈ nt t + 1
Table 1. Performance of simultaneous broadcast protocols with n participants and threshold t.

makes the security analysis more subtle or even allows new attacks. Mostly, this is due
to the need to rewind protocol execution in the simulation.

Our protocol can be simulated without rewinding. Additionally, we do not require
a full parallelization of ν-SimCast and rather focus on a simpler case where Setup is
executed once after which the participants run iterations of SimCast in parallel, i.e. for
all parallel instances, the Encrypt step of SimCast has to be completed before a single
decryption takes place. Such a scenario is sufficient to decrease the running-time for
many practical purposes (see Section 4). It is easy to see that the independence of non-
decrypted announcements is still guaranteed, with a factor 1/ν loss in the tightness of
the reduction.

We believe that full concurrency of SimCast iterations is also possible but requires
a more thorough analysis.

3.5 Performance Comparison for Simultaneous Broadcasts

We compare the performance of ν-SimCast with Gennaro’s simultaneous broadcast
protocol [14] and an approach based on Pedersen’s verifiable secret sharing [20], which
to the best of our knowledge are the most efficient solutions for simultaneous broad-
cast. For explicit comparison, we present all protocols in the same familiar discrete-log
setting.

Table 1 summarizes the key properties. We count communication and computation
cost in terms of group elements for a single player. For simplicity, we only consider
exponentiations, as they dominate the computation cost. Additionally, we analyze the
number of privately generated random group elements, the number of rounds and the
number of broadcasts, as for practical implementations they are the most expensive
factor.

All three protocols under comparison employ exactly the same mechanism—verifiable
secret sharing—for error handling. Thus, we describe all protocols in the optimistic
scenario, where all parties follow the protocol. Notice that since in the fault-free sce-
nario no errors occur, no additional communication and computation is needed in the
protocols’ complaint phases. Also, in all our evaluations, we assume that polynomial
evaluation does not require any exponentiations, i.e., that the values xj are precomputed
for all x = 1, . . . , n and j = 0, . . . , t.

We start by briefly reviewing Gennaro’s protocol, which we call Gennaro-00. The
protocol consists of the following steps (note that we omit steps for verifying the zero-
knowledge proofs):



1. Each party Pi publishes its own public key yi.
2. Pi, wishing to announce ui, publishes an ElGamal encryption Encyi

(ui, ri) and
proves knowledge of ui.

3. Pi verifiably shares ui and proves in zero-knowledge that the VSS-ed value is iden-
tical to the encrypted value.

4. The parties process complaints.
5. Each Pi reveals the values ui and ri.

In the discrete-log setting, the proof in Step 2—knowledge of a value ui encrypted
under yi = gxi as (gri , yri

i ui)—can be done efficiently by proving knowledge of the
discrete logarithm of logg yi.4 The equivalence of the value under commitment and the
value under VSS (Step 3) can be proven, using standard cut-and-choose techniques [2,
4]. However, in order to guarantee that a cheating prover cannot succeed with proba-
bility greater than 2−n, roughly n iterations are required. In other words, in order to
achieve error probability 2−80, the prover has to compute 80 ElGamal encryptions. Re-
cently, Camenisch et al. proposed a practical verifiable encryption scheme that avoids
cut-and-choose techniques altogether [5]. However, to guarantee soundness, the secret
key of the encryption scheme has to be unknown to the prover. Thus, the scheme cannot
be employed here, unless we assume trusted setup in Step 1.

To sum it up, Gennaro-00 runs in five rounds: in the first two rounds, each party
publishes a public key, an ElGamal ciphertext and a (short) ZK-proof. Round 3 requires
each party to privately send n− 1 shares, and broadcast t+1 verification values for the
polynomial together with a non-interactive ZK-proof involving 80 ElGamal ciphertexts.
In Round 4 no extra work has to be done in the fault-free case. The last round adds two
more broadcasted values. The total communication cost for one player is about n + t +
160 group elements including the t+3 expensive reliable broadcasts. Computation cost
is dominated by verification of shares and ZK-proofs—each party needs to compute
about t exponentiations for each received share and 160 exponentiations for each proof,
resulting in about n(t + 160) exponentiations for each player.

Second, we note that Pedersen’s verifiable secret sharing (Pedersen-VSS) can also
be employed for simultaneous broadcast. The security of the scheme follows from
Proposition 2 and the hardness of the discrete logarithm (refer to [15] for a similar
proof). It also requires an additional element h ∈ G such that the discrete logarithm
loggh is kept secret. Ignoring malicious faults, Pedersen-VSS then runs in three rounds,
where in the first round each party Pi runs Share to announce a value ai0 = ui, fol-
lowed by a complaint phase and, finally, Pi opens the announcement by revealing ai0

and bi0.
Compared to Gennaro’s protocol, Pedersen-VSS does not require any zero-knowledge

proofs and is thus also secure in the standard model. On the other hand, the VSS in-
creases the amount of communication and computation, and each player needs to gen-
erate twice as many random elements for the coefficients of the polynomials. Both
ν-SimCast and Gennaro-00 can employ the more efficient Feldman VSS scheme, even
though stand-alone Feldman VSS is malleable [15].

4 It is not guaranteed that each party actually knows the secret key corresponding to the public
key yi, and thus we indeed need an additional proof here.



The ν-SimCast protocol is comparable to Gennaro-00 and Pedersen-VSS in the
setup phase, where verifiable secret sharing dominates the cost. However, each subse-
quent error-free iteration is much cheaper, requiring only 4 broadcast elements (one
ElGamal ciphertext and its decryption from each player), 2n exponentiations for veri-
fying the decryption, and only a single random element for the ciphertext. To model the
worst-case scenario when faults are frequent, we may look at the cost of 1-SimCast. We
see that 1-SimCast still clearly outperforms Gennaro-00, and is slightly more efficient
than Pedersen-VSS, at the cost of one extra round. However, in most applications that
require simultaneous broadcast frequently, one does not expect malicious faults at every
iteration, and thus ν-SimCast is clearly more practical than Pedersen-VSS. We discuss
applications in detail in the next section.

4 Applications

The ν-SimCast protocol is a generic protocol that can be employed whenever players
need to simultaneously announce independent values. As we have seen, this allows
for the so-called sealed envelope auctions: non-malleability of SimCast guarantees that
players cannot choose their bids to be higher than (or related in any other way to)
previously announced bids; robustness further enforces that all “sealed” bids can later
be opened.

Moreover, Corollary 1 shows that ν-SimCast can be used for joint generation of ran-
dom values, opening up many applications beyond auction protocols. In particular, as
our protocol does not employ zero-knowledge proofs, it can be used for the distributed
generation of challenges for ZK-proofs without contradiction. We present some of the
most prominent examples, and discuss efficiency matters.

4.1 Multi-Party Computation

The ν-SimCast protocol can be applied whenever a multi-party computation (MPC)
protocol requires publicly known random values. As a prominent example, we present
the Commitment Multiplication Protocol (CMP) [7, 8] that is widely used in secure
multi-party computation. Namely, in order to add verifiability to an MPC protocol and
thus protect against active adversaries, players start by broadcasting commitments to
their inputs. In order to detect malicious behaviour, each player then needs to create
commitments to his output in a verifiable manner after every operation. Using a ho-
momorphic commitment scheme, addition and multiplication with a public constant
are straightforward operations: given a constant m, and P ’s commitments Com(a)
and Com(b) to inputs a and b, everyone can compute commitments Com(a + b) =
Com(a) · Com(b) and Com(ma) = mCom(a). Verifying the correctness of a commit-
ment Com(c) ?= Com(ab) is done interactively, using the following protocol:

1. P chooses a random β and broadcasts commitments Com(c), Com(β), Com(βb).
2. Other players jointly generate a random challenge r using 1-SimCast.
3. P opens commitment Com(ra+β) to reveal r′ and commitment Com(r′b−βb−rc)

to reveal 0.



4. Other players accept the commitment Com(c) iff all openings succeed.

Thus, such a protocol allows P to convince others that he has correctly generated a
commitment to the product of two inputs without revealing anything about his inputs
or output. More specifically, the protocol can be used to add verifiability to any MPC
protocol based on multiplicative secret sharing schemes (SSS). Namely, given shares
of two secrets, any linear SSS allows participants to locally compute shares of their
sum, and a multiplicative SSS allows to locally compute shares of their product. CMP
then adds verifiability to the computations, since every participant can prove that he has
correctly generated commitments to the new shares.

4.2 Coin Flipping
Our protocol can also be used in situations where random bits are required, rather than
random group values. In practice, it is common to apply a hash function to the group
element to obtain, say, a symmetric key from Diffie-Hellman key exchange. For a more
rigorous approach, a recent result by Fouque et al. implies that in subgroups of Z∗p,
efficient deterministic extractors exist in the standard model [13]. More precisely, the
authors bound the distance from uniform of the k least significant bits of a random
group element. For example, if p is a 2048-bit prime, then one can extract 128 bits with
a bias ε < 2−80 in a suitably sized prime order subgroup of Z∗

p .
Dwork et al. consider distributed noise generation for privacy-preserving statistical

databases [10]. In order to guarantee a particular (Gaussian) distribution of the noise,
their protocol requires n public random bits (where n is the number of participants).
They obtain those bits by having each participant verifiably share out 2 bits, and then
applying a deterministic extractor to the 2n low-quality bits to obtain n bits from a
“close-to-uniform” distribution. Using 1-SimCast, we can directly obtain (a constant
number of) random bits with a provably small bias in two rounds (excluding setup).
Compared to the VSS-based solution, we again have a factor t gain. If one requires
more random bits or stronger randomness guarantees than one execution of 1-SimCast
can provide, we can run ν-SimCast with ν > 1 parallel executions in two rounds.

5 Conclusion

ν-SimCast is an efficient protocol for simultaneous broadcasting that allows n parties
to announce independently chosen values, even if up to t < n

2 players are corrupted.
In contrast to previous solutions, our protocol only requires one run of verifiable secret
sharing in the initialization phase, after which an arbitrary number of broadcasts can be
carried out. During each broadcast, each party broadcasts only one ElGamal ciphertext
and its opening, and verifies n−1 encryptions, which gives a factor t ≈ n improvement
in communication and computation, compared to previous protocols. Also, our security
properties do not rely on the usage of any ZK-proofs. Instead, we combine semanti-
cally secure encryption with backing up secret keys through VSS and obtain security in
the standard model. Simultaneous broadcasting has various applications in distributed
computations: for instance, ν-SimCast can be used to jointly generate random values.
Multiple random bits can efficiently be extracted from the output of a single execution
of 1-SimCast, making it practical in coin-flipping applications.
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