
A Parameterized Splitting System and its
Application to the Discrete Logarithm Problem
with Low Hamming Weight Product Exponents

Sungwook Kim and Jung Hee Cheon

Department of Mathematical Sciences and ISaC-RIM,
Seoul National University, Seoul, 151-747, Korea

{avell7,jhcheon}@snu.ac.kr

Abstract. A low Hamming weight product (LHWP) exponent is used
to increase the efficiency of cryptosystems based on the discrete loga-
rithm problem (DLP). In this paper, we introduce a new tool, called a
Parameterized Splitting System, to analyze the security of the DLP with
LHWP exponents.
We apply a parameterized splitting system to attack the GPS identi-
fication scheme modified by Coron, Lefranc and Poupard in CHES’05
and obtain an algorithm of 261.6 time complexity which was expected to
be 278. Also a parameterized splitting system can be used to solve the
DLP with a LHWP exponent proposed by Hoffstein and Silverman in
254.51 time complexity, that is smaller than 259 in the recent Cheon-Kim
attack.

Key words: Discrete Logarithm Problem with Low Hamming Weight
Product (LHWP) Exponents, Parameterized Splitting Systems

1 Introduction

It is important to compute exponentiations efficiently in cryptosystems based on
the DLP. One approach to achieve this is to choose an exponent of low Hamming
weight. For example, the GPS identification scheme proposed by Girault [4, 5, 7]
uses as a secret key a product of two integers having low Hamming weight [4, 5,
7]. Hoffstein and Silverman suggested a use of exponent x = x1x2x3, where each
integer xi has very low Hamming weight [9]. But a use of low Hamming weight
exponents may weaken the security.

The Heiman-Odlyzko algorithm [8] and the Coppersmith’s splitting system
[3, 10, 16] have been used to analyze the DLP with low Hamming weight ex-
ponents. The complexity of solving the DLP with the Coppersmith’s splitting
system is about the square root of the size of the key space when the exponent
is a single integer. It can be regarded to be almost optimal since the DLP has
the square root complexity in the generic model [14].

In [9], Hoffstein and Silverman proposed an attack against low Hamming
weight product (LHWP) exponents. In [4], Coron, Lefranc and Poupard com-
bined the above attack with the Coppersmith’s splitting system and described

2 S. Kim and J. Cheon

an algorithm that can be applied when the order of a group is unknown. But the
complexity of the attack is far from the square root of the size of the key space.

Our results: In this paper, we generalize the Coppersmith’s splitting system
into a parameterized splitting system and propose its construction. It can be
used to show that given a bit string of length n, weight t and a positive integer
t1 < t, there exists a part of the string of length n1 and weight t1 where n1

t1
≈ n

t .
We apply a parameterized splitting system to the private key of the GPS iden-

tification scheme [4, 7] and the Hoffstein and Silverman’s exponent [9] (originally
designated for 280 bit security). In [4], Coron, Lefranc and Poupard proposed an
attack with 252 complexity to recover the private key of the GPS identification
scheme from CHES’04 and suggested a new private key which is claimed to have
the security level of 278. But our parameterized splitting system reduces them
to 247.7 and 265.5, respectively, and its randomized version reduces them to 243.5

and 261.6, respectively. In [1], Cheon and Kim introduced the notion of rotation-
free elements and proposed an attack of 255.9 complexity to the Hoffstein and
Silverman’s exponent. By combining the parameterized splitting system and the
concept of rotation-freeness, we reduce it further to 254.51.

Organization of the paper: In Section 2, we briefly introduce the Heiman-
Odlyzko algorithm, the Coppersmith’s splitting system and the rotation-free
elements. In Section 3, we propose a parameterized splitting system and its
application to the DLP of LHWP exponents. In Section 4, we analyze the com-
plexity of the GPS identification scheme and the DLP with the Hoffstein and
Silverman’s exponent. Finally, we conclude in Section 5.

2 Preliminaries

Let g be a generator of a group G and x is an integer. From now on, ord g and
wt(x) denote the order of g and the Hamming weight of x, respectively.

Shanks’ Baby-Step Giant-Step [13] and Pollard’s Rho algorithm [11] are rep-
resentative algorithms for the DLP. Algorithms for the DLP with low Hamming
weight exponents are variants of Shanks’ Baby-Step Giant-Step. In this section,
we introduce the Heiman-Odlyzko algorithm, the Coppersmith’s splitting system
and the rotation-free elements. In this section, we assume ord g is known.

2.1 The Heiman-Odlyzko Algorithm

The Heiman-Odlyzko algorithm [8] was introduced by Heiman and Odlyzko in-
dependently. (In [8], Heiman remarked this algorithm was independently noticed
by Odlyzko.) In this section, we sketch the Heiman-Odlyzko algorithm.

We use the notations from [16]. We regard the binary representation of

x =
n−1∑
i=0

xi2i

A Parameterized Splitting System 3

as the vector
x = (x0, . . . , xn−1).

Then this set of vectors corresponds to

{i : xi = 1} ⊂ Zn.

The following two mappings, which are inverse to each other, express the above
correspondence.

set : {0, 1, . . . , 2n − 1} → 2Zn , set(x = (x0, . . . , xn−1)) = {i : xi = 1}
val : 2Zn → {0, 1, . . . , 2n − 1}, val(Y) =

∑
i∈Y 2i

Consider the following equation

y = gx = gx1+x2 ,

where t = wt(x) = wt(x1) + wt(x2), wt(x1) = ts and set(x1) ∩ set(x2) = ∅.
From the above equation, we get

yg−x1 = gx2 . (1)

Now we compute yg−x1 for all x1 ∈ Zn such that wt(x1) = ts and build
a lookup table that contains all the pairs (yg−x1 , x1) and support an efficient
search on the first component. Then we compute gx2 for each x2 such that
wt(x2) = t − ts and look up the table until a collision is found.

Neglecting logarithmic factors, the time complexity of the Heiman-Odlyzko
Algorithm is O

((
n
ts

)
+

(
n

t−ts

))
. Since we need store only either the left or the

right hand side, the space complexity of the Heiman-Odlyzko Algorithm is
O

(
min{

(
n
ts

)
,
(

n
t−ts

)
}
)
.

2.2 The Coppersmith’s Splitting System

The Coppersmith’s splitting system was introduced in [10], based on the idea
from [2]. Later, Stinson gave a good description of it in [16]. We follow this
description.

Definition 1. (The Splitting System)
Suppose n and t are even integers, 0 < t < n.1 A (n, t)-splitting system is a pair
(X,B) that satisfies the following properties.
1. |X| = n and B is a set of n

2 -subsets of X called blocks.
2. For every Y ⊆ X such that |Y | = t, there exists a block B ∈ B such that
|Y ∩ B| = t

2 .

1 Stinson constructed the splitting system even for odd n and t in [16].

4 S. Kim and J. Cheon

Remark. An (n, t)-splitting system is denoted by an (N ; n, t)-splitting system if
it has N blocks.

The existence of a splitting system follows from this construction: Suppose
X = Zn = {0, 1, . . . , n− 1}, Bi = {i + j mod n : 0 ≤ j ≤ n

2 − 1}, B = {Bi : 0 ≤
i ≤ n

2 − 1}. Then, (X,B) is an (n
2 ;n, t)-splitting system.

The Coppersmith’s splitting system enables us to restrict to B the search
space of x1 and x2 in Equation (1). Hence This algorithm requires N

(n
2
t
2

)
time

complexity and
(n

2
t
2

)
space complexity.

A Randomized Algorithm The randomized version of the above algorithm
is summarized in [16], which is also due to [3]. The time complexity of the
randomized version is O

(√
t
(n

2
t
2

))
and the space complexity of the randomized

version is O
((n

2
t
2

))
.

2.3 Rotation-Free Elements

In [1], Cheon and Kim defined an equivalent relation ∼ on Z2n−1 as follows:

a ∼ b if and only if there exists a non-negative integer i such that a = 2ib.

The idea of Cheon and Kim’s attack on LHWPs is to reduce the key search space
by considering only one element from each equivalent class.

Since there is no known algorithm to generate such representatives efficiently,
they suggested a use of the set of rotation-free elements which contains at least
one representative for each equivalent class. The set is only little bit larger than
the number of equivalent classes and easily generated.

The definition of rotation-free elements is as follows:

Definition 2. (Rotation-Free Elements [1])
An element z ∈ Z2n−1 is called a rotation-free element if there is a k-tuple
(a1, a2, . . . , ak) for a positive integer k satisfying

1. ai ≥ a1 for 1 ≤ i ≤ k.

2.
k∑

i=1

ai = n.

3. z = 2n−1 + 2n−1−a1 + · · · + 2n−1−(a1+a2+···+ak−1).

Let n, k be positive integers with k < n and RF (n, k) be the number of
rotation-free elements of weight k in Z2n−1. Then RF (n, k) is given in [1] by

RF (n, k) =
⌊n

k ⌋−1∑
i=0

(
n − 2 − ki

k − 2

)
.

A Parameterized Splitting System 5

3 Parameterized Splitting Systems

In this section, we construct a Parameterized Splitting System, that is a gener-
alization of the Coppersmith’s splitting system. In the Coppersmith’s splitting
system, given Y ⊂ Zn, the size of a block B such that |Y ∩ B| = t

2 is fixed to
n
2 . We show that the size of a block B can be flexible so that |Y ∩ B| = ts and
|B| = ⌊ tsn

t ⌋ for any 0 ≤ ts ≤ t. This flexibility yields an efficient algorithm for
the DLP with LHWP exponents.

3.1 Parameterized Splitting Systems

We start with the definition of parameterized splitting systems.

Definition 3. (Parameterized Splitting Systems)
Suppose n and t are integers such that 0 < t < n. For any ts such that 0 ≤ ts ≤ t,
a (N ; n, t, ts)-parameterized splitting system is a pair (X,B) that satisfies the
following properties.
1. |X| = n and B = {B ⊂ X : |B| = ⌊ tsn

t ⌋}.
2. |B| = N .
3. For every Y ⊆ X such that |Y | = t, there exists a block B ∈ B such that
|Y ∩ B| = ts.

Remark. We may assume 0 < t < n
2 , 1 ≤ ts ≤ t

2 .

The following Lemma 1 constructs an efficient parameterized splitting sys-
tem.

Lemma 1. X = {0, 1, . . . , n − 1} , Y = {y1, y2, . . . , yt} ⊂ X such that |Y | =
t. Suppose ts is an integer such that 0 ≤ ts ≤ t. Let Bi = {i mod n, i +
1 mod n, . . . , i + ⌊ tsn

t ⌋− 1 mod n}, i = 0, 1, . . . , n− 1. Then, there exists i such
that |Y ∩ Bi| = ts.

Proof. For each y ∈ Y, let ν(y) = {i : y ∈ Bi, i = 0, 1, . . . , n − 1}. Then,
|ν(y)| = ⌊ tsn

t ⌋.
Let M be 1

n

∑n−1
i=0 |Y ∩ Bi|. Since Y ∩ Bi =

∪
y∈Y ({y} ∩ Bi) and if yi ̸= yj ,

then (yi ∩ Bi) ∩ (yj ∩ Bi) = ∅,

M =
1
n

n−1∑
I=0

|Y ∩ Bi| =
1
n

n−1∑
i=0

|
∪

y∈Y

({y} ∩ Bi)| =
1
n

n−1∑
i=0

∑
y∈Y

|{y} ∩ Bi|

=
1
n

∑
y∈Y

n−1∑
i=0

|{y} ∩ Bi| =
1
n

∑
y∈Y

|ν(y)| =
t

n

⌊
tsn

t

⌋
.

From tsn
t − 1 < ⌊ tsn

t ⌋ ≤ tsn
t ,

ts − 1 < ts −
t

n
=

t

n
· (tsn

t
− 1) <

t

n

⌊
tsn

t

⌋
= M ≤ t

n
· tsn

t
= ts. (2)

6 S. Kim and J. Cheon

Suppose there doesn’t exist Bi such that |Y ∩ Bi| = ts. If |Y ∩ Bi| < ts for
all i, then M ≤ ts − 1, which contradicts with Equation (2). If |Y ∩Bi| > ts for
all i, then ts + 1 ≤ M , which contradicts with Equation (2).

By the above discussions, there exists Bi and Bj such that |Y ∩Bi| ≤ ts and
|Y ∩Bj | ≥ ts. However, from the fact |Y ∩Bi|−|Y ∩Bi+1| ∈ {−1, 0, 1}, |Y ∩Bk|
should be ts for some k ∈ {i mod n, i + 1 mod n, . . . , j − 1 mod n, j mod n},
which contradicts with the assumption.

Therefore, there exists Bi such that |Y ∩ Bi| = ts. ⊓⊔

Theorem 1. Let X = {0, 1, . . . , n − 1}, Bi = {i mod n, i + 1 mod n, . . . , i +
⌊ tsn

t ⌋ − 1 mod n}, B = {Bi : 0 ≤ i ≤ n − 1}. Then, (X,B) is a (n;n, t, ts)-
parameterized splitting system.

A Randomized Version For given Y and ts, Theorem 1 implies that if we
try at most n blocks, we can find some block B such that |Y ∩ B| = ts. In a
randomized version, we randomly choose B ⊂ Zn such that |B| = ⌊ tsn

t ⌋ and
check whether |Y ∩ B| = ts. Then the probability of success is

p =

(
t
ts

)(n−t
⌊ tsn

t ⌋−ts

)(
n

⌊ tsn
t ⌋

) .

Lemma 3 shows that the expected number of trials to find a good block B
such that |Y ∩ B| = ts is O(

√
t). We require Lemma 2 from [16] to get Lemma

3.

Lemma 2. Suppose that n and λn are positive integers, where 0 < λ < 1.
Define

H(λ) = λ log2 λ − (1 − λ) log2(1 − λ).

Then
2nH(λ)√

8nλ(1 − λ)
≤

(
n

λn

)
≤ 2nH(λ)√

2πnλ(1 − λ)
.

Lemma 3. p >
√

π
2 ·

√(
ts

t − 1
n

) (
1 − ts

t

)
· t−1/2 ≥

√
π

4 t−1/2.

Proof.

p =
(

t

ts

)(n−t
⌊ tsn

t ⌋−ts

)(
n

⌊ tsn
t ⌋

) =
(

t

λ1t

)(
n−t

λ2(n−t)

)(
n

λn

) ,

where λ1 = ts

t , λ2 = ⌊ tsn
t ⌋−ts

n−t and λ = ⌊ tsn
t ⌋
n .

From Lemma 2,

p ≥ 2tH(λ1)√
8tλ1(1 − λ1)

· 2(n−t)H(λ2)√
8(n − t)λ2(1 − λ2)

·
√

2πnλ(1 − λ)
2nH(λ)

=
2tH(λ1)+(n−t)H(λ2)

2nH(λ)
·

√
2πnλ(1 − λ)

8
√

t(n − t)λ1(1 − λ1)λ2(1 − λ2)
.

A Parameterized Splitting System 7

Since H(λ) is convex,

tH(λ1) + (n − t)H(λ2) ≥ nH(λ),

hence,

p ≥
√

2πnλ(1 − λ)
8
√

t(n − t)λ1(1 − λ1)λ2(1 − λ2)
.

Since 0 < λi < 1,
1√

λi(1 − λi)
≥ 2

for i = 1, 2, hence,

p ≥
√

π

2
·
√

λ(1 − λ) · t−1/2.

We may assume 1 ≤ ts ≤ t
2 and 2 ≤ t ≤ n

2 . From λ = ⌊ tsn
t ⌋/n, we have

λ(1 − λ) > (
ts
t
− 1

n
)(1 − ts

t
) ≥ 1

8
.

⊓⊔

3.2 The DLP with LHWP Exponents when the Order of g is
Known

Before detailing how parameterized splitting systems can be used, we review
some known methods.

For an integer x, we denote by |x| the bit-length of x. Let X1 = {x1 : |x1| =
n1, wt(x1) = t1} and X2 = {x2 : |x2| = n2, wt(x2) = t2}. Consider x=x1x2,
where x1 ∈ X1 and x2 ∈ X2.

As in [4, 9], from the following equation

y = (gx1)x2 = hx2 ,

x can be computed by repeating an algorithm for the DLP by |X1|. So, the time
complexity and the space complexity of the Heiman-Odlyzko algorithm are

O

(
|X1|

((
n2

ts

)
+

(
n2

t − ts

)))
and O

(
min

{(
n2

ts

)
,

(
n2

t − ts

)})
,

respectively. To minimize the time complexity, ts should be ⌈ t2
2 ⌉ or ⌊ t2

2 ⌋. The
time complexity and the space complexity of the parameterized splitting system
are

O

(
|X1| · n2

(n2
2
t2
2

))
and O

((n2
2
t2
2

))
,

respectively.

8 S. Kim and J. Cheon

Another attack, which is also followed from [4, 9], takes the trade-off between
time and space. y = gx1x2 can be converted into

yx1
−1

g−x3 = gx4 ,

where x2 = x3 + x4 and set(x3) ∩ set(x4) = ∅. Note that x−1
1 denotes the

multiplicative inverse of x1 modulo the order of g.
Put wt(x3) = ts. From the above equation, we find x1 and x2 by computing

both sides and comparing them.
Therefore the time complexity and the space complexity of the Heiman-

Odlyzko algorithm are

O

(
|X1|

(
n2

ts

)
+

(
n2

t − ts

))
and O

(
min

{
|X1|

(
n2

ts

)
,

(
n2

t − ts

)})
,

respectively. ts is an integer such that 0 ≤ ts ≤ ⌈ t2
2 ⌉. Comparing to the first

application, the time complexity is lower.
The time complexity and the space complexity of the splitting system are

O

(
|X1| ·

n2

2

(n2
2
t2
2

)
+

n2

2

(n2
2
t2
2

))
= O

(
|X1| ·

n2

2

(n2
2
t2
2

))
and O

(
n2

2

(n2
2
t2
2

))
,

respectively. Comparing to the first application, the efficiency of the time com-
plexity is hardly improved.

In the case of the DLP with a single integer exponent of low Hamming
weight, the splitting system appears to be more efficient than the Heiman-
Odlyzko algorithm since one of the factors of the time complexity, n2, is reduced
to n2

2 in the splitting system. But the splitting system fixes ts = t2
2 while the

Heiman-Odlyzko algorithm is able to choose ts arbitrary. This difference yields
the Heiman-Odlyzko algorithm carries out trade-off efficiently while the splitting
system does not.

Now we propose a new algorithm using parameterized splitting systems,
which takes the advantages from both of previous algorithms. From Section 3.1,
for ts ∈ [0, ⌈ t2

2 ⌉], there exists a (n2; n2, t2, ts)-parameterized splitting system
(Zn2 , B). So, there is a block Bi ∈ B such that |set(x2) ∩ Bi| = ts. Let

set(x3) = set(x2) ∩ Bi and set(x4) = set(x2) ∩ (Zn2 − Bi).

Then, we get the following equation

yx1
−1

g−val(set(x2)∩BI) = gval(set(x2)∩(Zn2−Bi)).

From the above equation, we get Algorithm 1. The first part of Algorithm 1 is
to compute and store all the values of the left-hand side. The second part of
Algorithm 1 is to compute each value of the right-hand side and check if it is in
the list from the first part.

Now we present Algorithm 1 and its randomized version.

A Parameterized Splitting System 9

Algorithm 1
Finding discrete logarithm when the order of g is known (deterministic)
Input: g, y ∈ G, X1, (n2; n2, t2, ts)-parameterized splitting system (Zn2 ,B)
Output: logg y
1: for all x1 ∈ X1 do
2: for all Bi do
3: for all Y1,i ⊂ Bi such that |Y1,i| = ts do

4: Compute yx1
−1

g−val(Y1,i)

5: Add (x1, val(Y1,i), y
x1

−1
g−val(Y1,i)) to the list L

6: Sort L by third coordinate
7: end for
8: end for
9: end for

10: for all Zn2 − Bi do
11: for all Y2,i ⊂ Zn2 − BI such that |Y2,i| = t2 − ts do
12: Compute gval(Y2,i)

13: if gval(Y2,i) is the third coordinate of some entry in the list L then
14: return x1(val(Y1,i) + val(Y2,i))
15: end if
16: end for
17: end for

Algorithm 2
Finding discrete logarithm when the order of g is known (randomized)
Input: g, y ∈ G, X1, ts

Output: logg y
1: loop
2: Choose randomly B ⊂ Zn2 such that |B| = ⌊ tsn2

t2
⌋

3: for all x1 ∈ X1 do
4: for all Y1 ⊂ B such that |Y1| = ts do

5: Compute yx1
−1

g−val(Y1)

6: Add (x1, val(Y1), y
x1

−1
g−val(Y1)) to the list L

7: Sort L by third coordinate
8: end for
9: end for

10: for all Y2 ⊂ Zn2 − B such that |Y2| = t2 − ts do
11: Compute gval(Y2)

12: if gval(Y2) is the third coordinate of some entry in the list L then
13: return x1(val(Y1) + val(Y2))
14: end if
15: end for
16: end loop

10 S. Kim and J. Cheon

Analysis: Algorithm 1 needs |X1| · n2

(⌊ tsn2
t2

⌋
ts

)
exponentiations in the first part

and n2

(n2−⌊ tsn2
t2

⌋
t2−ts

)
exponentiations in the second part. In Algorithm 1, we can

store (val(Y2,i), gval(Y2,i))’s instead of (x1, val(Y1,i), yx1
−1

g−val(Y1,i))’s. In this
case, we compute yx1

−1
g−val(Y1,i) and find a collision. So, we store one of two

sets which has smaller cardinality. Thus, the time complexity and the space com-
plexity (neglecting logarithmic factors) are

O

(
|X1| · n2

(
⌊ tsn2

t2
⌋

ts

)
+ n2

(
n2 − ⌊ tsn2

t2
⌋

t2 − ts

))
and

O

(
min

{
|X1| · n2

(
⌊ tsn2

t2
⌋

ts

)
, n2

(
n2 − ⌊ tsn2

t2
⌋

t2 − ts

)})
,

respectively.
Lemma 3 implies that in about 4√

π
t2

1/2 iterations Algorithm 2 outputs logg y.
And we only make L for each B. Thus, if we count the number of group expo-
nentiations, the time complexity and the space complexity are

O

(
|X1| ·

√
t2

(
⌊ tsn2

t2
⌋

ts

)
+
√

t2

(
n2 − ⌊ tsn2

t2
⌋

t2 − ts

))
and

O

(
min

{
|X1| ·

(
⌊ tsn2

t2
⌋

ts

)
,

(
n2 − ⌊ tsn2

t2
⌋

t2 − ts

)})
,

respectively.

3.3 The DLP with LHWP Exponents when the Order of g is
Unknown

Recall the following equation in Section 3.2,

yx1
−1

g−x3 = gx4 , (3)

If ord g is unknown, x−1
1 is not easy to compute from x1 and so Equation (3)

cannot be checked directly.
However, we can use Algorithm 1 or 2 from following trick from [4] and,

earlier, proposed by Shoup [15]. Let

χ =
∏

x∈X1

x and ĝ = gχ.

From

(yx1
−1

g−x3)χ = (gx4)χ,

we get

y
Q

x∈X1−{x1} x · ĝ−x3 = ĝx4 , (4)

A Parameterized Splitting System 11

where x2 = x3 + x4 and set(x3) ∩ set(x4) = ∅.
To solving the DLP, we should perform the precomputation of y

Q

x∈X1−{x1} x,
ĝ and ĝ−1 and store them.

{y
Q

x∈X1−{x1} x : xi ∈ X1} can be computed by the algorithm proposed by
Coron, Lefranc and Poupard in [4]. According to the algorithm, |X1| · log2 |X1|
group exponentiations are necessary.

Therefore if we are able to learn ĝ−1, we have Algorithm 3 and Algorithm 4.

Algorithm 3
Finding discrete logarithm when the order of g is unknown (deterministic)
Input: g, y ∈ G, X1, (n2; n2, t2, ts)-parameterized splitting system (Zn2 ,B)
Output: logg y

1: Compute y
Q

x∈X1−{x1} x, ĝ and ĝ−1 and store them
2: Substituting ĝ for g, ĝ−1 for g−1 and {y

Q

x∈X1−{x1} x : xi ∈ X1} for X1, carry out
Algorithm 1

Algorithm 4
Finding discrete logarithm when the order of g is unknown (randomized)
Input: g, y ∈ G, X1

Output: logg y

1: Compute y
Q

x∈X1−{x1} x, ĝ and ĝ−1 and store them
2: Substituting ĝ for g, ĝ−1 for g−1 and {y

Q

x∈X1−{x1} x : xi ∈ X1} for X1, carry out
Algorithm 2

Analysis: First, we analyze Algorithm 3. In Step 1, we perform |X1| · log2 |X1|
group exponentiations and store the results. There is no change of the time
complexity and space complexity in Step 2. Therefore, the time complexity is

O

(
|X1| · log2 |X1| + |X1| · n2

(
⌊ tsn2

t2
⌋

ts

)
+ n2

(
n2 − ⌊ tsn2

t2
⌋

t2 − ts

))
and the space complexity is

O

(
|X1| · log2 |X1| + min

{
|X1| · n2

(
⌊ tsn2

t2
⌋

ts

)
, n2

(
n2 − ⌊ tsn2

t2
⌋

t2 − ts

)})
.

The best efficiency of the time complexity can be achieved when |X1|
(⌊ tsn2

t ⌋
ts

)
≈(

n2−⌊ tsn2
t ⌋

t2−ts

)
. At this ts, |X1| · log2 |X1| is negligible.

12 S. Kim and J. Cheon

The only difference with Algorithm 3 is Step 2. Therefore, the time complex-
ity is

O

(
|X1| · log2 |X1| + |X1| ·

√
t2

(
⌊ tsn2

t2
⌋

ts

)
+
√

t2

(
n2 − ⌊ tsn2

t2
⌋

t2 − ts

))
and the space complexity is

O

(
|X1| · log2 |X1| + min

{
|X1| ·

(
⌊ tsn2

t2
⌋

ts

)
,

(
n2 − ⌊ tsn2

t2
⌋

t2 − ts

)})
.

Remark. We note that Algorithm 3 and 4 might output false answers. These
errors come from the fact that the order of ĝ of Equation (4) might be smaller
than that of g. The worst case is that the order of g is a divisor of that of ĝ. In
this case, Equation (4) is an identical equation.

4 Applications

In this section, we attack the private keys of the GPS identification scheme [5,
6, 12] and the exponent proposed by Hoffstein and Silverman [9].

4.1 Attacks on Private Keys of the GPS Identification Scheme

We briefly introduce the GPS identification scheme.

GPS Identification Scheme The GPS identification scheme, such as labelled
by the NESSIE project, is an interactive protocol between a prover and a verifier
which contains one or several rounds of three passes [7]. The GPS identification
scheme is based on the DLP over ZN

∗. Precisely, when g is an element of ZN
∗

of maximal order m, the GPS identification scheme is based on the DLP over
G = ⟨g⟩, where ord g is secret. When y = g−x mod N , a private key of a prover
is x and public keys are (N, g, y). N is the product of two primes and the
factorization of N should be difficult.

There are four security parameters as follows:

I. S is the binary size of x. Typically, S=160.
ii. k is the binary size of the challenges sent to the prover and determines the

level of security of the scheme.
iii. R is the binary size of the exponents used in the commitment computation.

It typically verifies R = S + k + 80.
iv. m is the number of rounds the scheme is iterated. Theoretically, m is poly-

nomial in the size of the security parameter. But, in practice, m is often
chosen equal to 1.

A Parameterized Splitting System 13

Prover Verifier

choose r ∈ [0, 2R[

compute W = gr mod N
W−→

choose c ∈ [0, 2k[
c←−

check c ∈ [0, 2k[

compute z = r + x × c
z−→ check z ∈ [0, 2R + 2k+S [

verify gzyc = W

Fig 1. The GPS Identification Scheme

Private Keys of the GPS Identification Scheme For the efficiency of the
protocol, Girault and Lefranc proposed a private key x as x = x1x2 in [7], where
x1 is a 19-bit number with 5 random bits equal to 1 chosen among the 16 least
significant ones, x2 is a 142-bit number with 16 random bits equal to 1 chosen
among the 138 least significant ones in CHES’04.

Later in CHES’05, to strengthen the security, Coron, Lefranc and Poupard
suggest the modified x1 and x2 in [4], where x1 is a 30-bit number with 12
nonzero bits and x2 is a 130-bit number with 26 nonzero bits.

Attacks on Private Keys We put |X1| =
(
16
5

)
, n2 = 138, t2 = 16 for private

keys from [7] and |X1| =
(
30
12

)
, n2 = 130, t2 = 26 for private keys from [4].

Since N is public we can easily compute ĝ−1 of Algorithm 2, using the extended
Euclidean algorithm. Before applying these private keys to Algorithm 3 and
Algorithm 4, we note that when ts is chosen to guarantee the most efficient time
complexity, the cost of precomputation is negligible.

Table 1 compares the complexities of recovering private keys from [7] and
Table 2 for [4]. The private key from [7] was broken in [4], which needs 252 group
exponentiations. But the parameterized splitting system and its randomized ver-
sion reduce it further to 247.7 and 243.5, respectively.

Method Exponentiations Storage
[7] 252 233

Ours (Algorithm 3), ts = 7 247.7 244.5

Ours (Algorithm 4), ts = 7 243.5 241

Table 1. Private Keys from [7]

Table 2 shows that the parameterized splitting system and its randomized
version reduce the complexity of the DLP with the private key proposed in [4]
from 278 to 265.5 and 262.1, respectively.

14 S. Kim and J. Cheon

Method Exponentiations Storage
[4] 278 243.9

Ours (Algorithm 3), ts = 9 265.5 263.1

Ours (Algorithm 4), ts = 9 261.6 259.2

Table 2. Private Keys from [4]

4.2 Attacks on the Hoffstein and Silverman’s Exponent

The Hoffstein and Silverman’s Exponent Hoffstein and Silverman pro-
posed a use of exponent x = x1x2x3 ∈ Z21000−1, where x1, x2 and x3 are inte-
gers of wt(x1) = 6, wt(x2) = 7 and wt(x3) = 7 or wt(x1) = 2, wt(x2) = 2 and
wt(x3) = 11 [9]. In the case of wt(x1) = 6, wt(x2) = 7 and wt(x3) = 7, all values
of the Hamming weight are similar, hence, splitting of one’s Hamming weight
doesn’t give advantages. So we focus on the case of wt(x1) = 2, wt(x2) = 2 and
wt(x3) = 11.

Let y = gx for x = x1x2x3 where xi’s are of weight (2,2,11). Following the
trick in [1], we rewrite x as x = 2kx̄1x̄2x3 where 0 ≤ k < n and each of x̄i are
rotation-free elements in the same equivalent class with xi for each i. We further
split x3 by x3 = x′

3 + x′′
3 where x′

3 and x′′
3 have weight 3 and 8, respectively.

Then we can find x by checking the following equations:

y2−kx̄−1
1 x̄2−1g−x′

3 = gx′′
3 .

In [1], Cheon and Kim modify k so that x′′
3 becomes rotation-free. Then the

complexity for n = 1000 is

n · RF (n, 2)2
(

n − 1
3

)
+ RF (n, 8) ≈ 255.2 + 254.5 ≈ 255.9.

On the other hand, if we combine the existence of a parameterized splitting
system and the notion of the rotation-free, we get a little bit smaller complexity.
When we split x3, we apply the Theorem 1 to find a block B such that |B| = ⌊ 3n

11 ⌋
and |set(x3) ∩ B| = 3. We write set(x3) ∩ (Zn − B) = {s0, s1, . . . , s7} and let
li be the number of elements of Zn in [si, si+1] for i = 0, 1, . . . , 7, where we set
s8 = s1 and [s7, s1] = {s7, . . . , n − 1, 0, . . . , s1}. Suppose lj is the maximum of
li’s. Then, lj should be larger than ⌊ 3n

11 ⌋. We shift x3 so that sj is placed at 0.
From the above discussions, there exists an integer k′ such that 2k′

x3 =
x′

3 + x′′
3 , where x′

3 and x′′
3 satisfy

1. x′
3 is a string of length n and weight 3. If we write set(x′

3) = {a0, a1, a2} for
0 < a0 < a1 < a2 ≤ n − 1, then a2 − a0 + 1 ≤ ⌊ 3n

11 ⌋.
2. x′′

3 is a string of length n and weight 8. If we write set(x′′
3) = {b0, b1, . . . , b7}

for 0 = b0 < b1 < · · · < b7 ≤ n − 1, then bi − bi−1 ≤ b1 and ⌊ 3n
11 ⌋ ≤ b1.

A Parameterized Splitting System 15

To enumerate the number N1 of x′
3, we first fix a0 ∈ [1, n−3] and then choose

distinct a1, a2 ∈ [a0 + 1, min {a0 − 1 + ⌊ 3n
11 ⌋, n − 1}]. Hence

N1 =
⌈ 8n

11 ⌉∑
a0=1

(
⌊ 3n

11 ⌋ − 1
2

)
+

n−3∑
a0=⌈ 8n

11 ⌉+1

(
n − 1 − a0

2

)
.

To enumerate the number N2 of x′′
3 , we let l0 = b1, li = bi+1 − bi for i =

1, . . . , 6 and l7 = n − 1 − b7. Then, N2 is the number of 8-tuple (l0, . . . , l7)
satisfying

1.
∑7

i=0 li = n − 1.
2. ⌊ 3n

11 ⌋ ≤ l0 ≤ n − 7.
3. 1 ≤ li ≤ l0 for i = 1, . . . , 6 and 0 ≤ l7 ≤ l0.

First, we enumerate the number of solutions satisfying the above conditions when
l7 ̸= 0. Consider the following equation.

7∑
i=1

li = n − 1 − l0. (5)

This is the problem that how many solutions of positive integers the linear
Diophantine equation (5) has when 1 ≤ li ≤ 0 for i = 1, · · · , 6.

Given l0, Let A(l0) be the set of solutions of Equation (5), Ai(l0) be the
set of solutions when li > l0 and Ai,j(l0) be the set of solutions when li > l0
and lj > l0. Note that when ⌊ 3n

11 ⌋ ≤ l0 ≤ ⌊n−2
3 ⌋, only up to two values of

li, i = 1, · · · , 7 can be larger than l0, because otherwise, the sum of the others
should be less than 0. Similarly, when ⌊n−2

3 ⌋ + 1 ≤ l0 ≤ ⌊n−2
2 ⌋, only one value

can be larger than l0 and when ⌊n−2
2 ⌋ + 1 ≤ l0 ≤ n − 7, any value cannot be

larger than l0. Thus for given l0, the number of solutions in the case of l7 ̸= 0 is

N2,1(l0)′ = |A(l0)| − |
7∪

i=0

Ai(l0)
c| = |A(l0)| − {

7∑
i=0

|Ai(l0)| −
∑
i ̸=j

|Ai,j(l0)|}

=
(

n − 2 − l0
6

)
−

{
7
(

n − 2 − 2l0
6

)
−

(
7
2

)(
n − 2 − 3l0

6

)}
when ⌊ 3n

11 ⌋ ≤ l0 ≤ ⌊n−2
3 ⌋. When ⌊n−2

3 ⌋ + 1 ≤ l0 ≤ ⌊n−2
2 ⌋,

N2,2(l0)′ = |A(l0)| − |
7∪

i=0

Ai(l0)
c| = |A(l0)| −

7∑
i=0

|Ai(l0)|

=
(

n − 2 − l0
6

)
− 7

(
n − 2 − 2l0

6

)
.

When ⌊n−2
2 ⌋ + 1 ≤ l0 ≤ n − 7,

N2,3(l0)′ = |A(l0)| =
(

n − 2 − l0
6

)
.

16 S. Kim and J. Cheon

When l7 = 0, the number of solutions N2,i(l0)′′, i = 1, 2, 3, can be computed
in a similar way, i.e., 6 in each binomial is replaced to 5.

Thus,

N2 =
⌊n−2

3 ⌋∑
l0=⌊ 3n

11 ⌋

(N2,1(l0)′ + N2,1(l0)′′) +
⌊n−2

2 ⌋∑
l0=⌊n−2

3 ⌋+1

(N2,3(l0)′ + N2,3(l0)′′)

+
n−7∑

⌊n−2
2 ⌋+1

(N23(l0)
′ + N2,3(l0)′′).

Therefore, the total time complexity of the combined algorithm is

n · RF (n, 2)2N1 + N2 ≈ 252.75 + 254.01 ≈ 254.51.

And the space complexity of the combined algorithm is about 252.75.

5 Conclusion

In this paper, we have proposed a Parameterized Splitting System and its ran-
domized version. Since a parameterized splitting system takes the advatages
from both of the splitting system and the Heiman-Odlyzko algorithm, it gives
an efficient algorithm for the DLP with LHWP exponents.

Acknowledgements The authors would like to thank Martijn Stam and the
anonymous referees for valuable comments. The first author also would like to
thank Namsu Jho for helpful discussions. This work was supported by the Ko-
rea Science and Engineering Foundation (KOSEF) grant funded by the Korea
government (MOST) (No. R11-2007-035-01002-0).

References

1. J. Cheon and H. Kim, Analysis of Low Hamming Weight Products, To appear in
Discrete Applied Mathematics.

2. D. Coppersmith and G. Seroussi, On the Minimum Distance of Some Quadratic
Residue Codes, IEEE Trans. Inform. Theory 30 (1984), MR 86c:94025, pp 407–411.

3. D. Coppersmith, Private communication to Scott Vanstone, December 1997.
4. J. Coron, D. Lefranc and G. Poupard, A New Baby-Step Giant-Step Algorithm and

Some Application to Cryptanalysis, Proc CHES 2005, LNCS 3656, Springer-Verlag,
2005, pp. 47–60.

5. M. Girault, Self-Certified Public Keys, Proc. Eurocrypt 1991, LNCS 547, Springer-
Verlag, 1991, pp. 490–497.

6. M. Girault, G. Poupard and J. Stern, Some Modes of Use of the GPS Idetification
Scheme, 3rd Nessie Conference, Springer-Verlag, November 2002.

7. M. Girault and D. Lefranc, Public Key Authentication with One Single (on-line)
Addition, Proc. CHES 2004, LNCS 3156, Springer-Verlag, 2004, pp. 413–427.

A Parameterized Splitting System 17

8. R. Heiman, A Note on Discrete Logarithms with Special Structure, Proc. Eurocrypt
1992, LNCS 658, Springer-Verlag, 1993, pp 454–457.

9. J. Hoffstein and J. Silverman, Random Small Hamming Weight Products with Ap-
plication to Cryptography, Discrete Appl. Math., Vol. 130, No.1, 2003, pp. 37–49.

10. A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1997, pp 128.

11. J. Pollard, Monte Carlo Methods for Index Computation (mod p), Mathematics of
Computation, Vol. 32, No. 143, 1978, pp 918–924.

12. G. Poupard and J. Stern, Security Analysis of a Practical “On the Fly” Authentica-
tion and Signature Generation, Proc. Eurocrypt 1998, LNCS 1403, Springer-Verlag,
1998, pp 422–436.

13. D. Shanks. Class Number, a Theory of Factorization and Genera, Proc. Symp.
Pure Math., Vol. 20, 1971, pp 415–440.

14. V. Shoup, Lower Bounds for discrete Logarithms and Related Problems, Proc. Eu-
rocrypt 1997, LNCS 1233, Springer-Verlag, 1997, pp 256–266.

15. V. Shoup, Practical Threshold Signatures, Proc. Eurocrypt 2000, LNCS 1807,
Springer-Verlag, 2000, pp 207–220.

16. D. Stinson. Some Baby-Step Giant-Step Algorithms for the Low Hamming Weight
Discrete Logarithm Problem, Mathematics of Computation, Vol. 71, No. 237, 2002,
pp 379–391.

