
Universally Composable Security with Global
Setup

Ran Canetti1, Yevgeniy Dodis2, Rafael Pass3, and Shabsi Walfish2

1 canetti@csail.mit.edu IBM Research
2 {dodis,walfish}@cs.nyu.edu New York University

3 rafael@cs.cornell.edu Cornell University

Abstract. Cryptographic protocols are often designed and analyzed un-
der some trusted set-up assumptions, namely in settings where the par-
ticipants have access to global information that is trusted to have some
basic security properties. However, current modeling of security in the
presence of such set-up falls short of providing the expected security guar-
antees. A quintessential example of this phenomenon is the deniability
concern: there exist natural protocols that meet the strongest known
composable security notions, and are still vulnerable to bad interactions
with rogue protocols that use the same set-up.
We extend the notion of universally composable (UC) security in a way
that re-establishes its original intuitive guarantee even for protocols that
use globally available set-up. The new formulation prevents bad interac-
tions even with adaptively chosen protocols that use the same set-up. In
particular, it guarantees deniability. While for protocols that use no set-
up the proposed requirements are the same as in traditional UC security,
for protocols that use global set-up the proposed requirements are sig-
nificantly stronger. In fact, realizing Zero Knowledge or commitment be-
comes provably impossible, even in the Common Reference String model.
Still, we propose reasonable alternative set-up assumptions and protocols
that allow realizing practically any cryptographic task under standard
hardness assumptions even against adaptive corruptions.

1 Introduction

The trusted party paradigm is a fundamental methodology for defining security of
cryptographic protocols. The basic idea (which originates in [24]) is to say that
a protocol securely realizes a given computational task if running the protocol
amounts to “emulating” an ideal process where all parties secretly hand their
inputs to an imaginary “trusted party” who locally computes the desired outputs
and hands them back to the parties. One potential advantage of this paradigm is
its strong “built in composability” property: The fact that a protocol π emulates
a certain trusted party F can be naturally interpreted as implying that any
system that includes calls to protocol π should, in principle, behave the same if
the calls to π were replaced by ideal calls to the trusted party F .

Several formalizations of the above intuitive idea exist, e.g. [23, 27, 3, 9, 20,
31, 10, 30]. These formalizations vary in their rigor, expressibility, generality and
restrictiveness, as well as security and composability guarantees. However, one



2

point which no existing formalism seems to handle in a fully satisfactory way is
the security requirements in the presence of “global trusted setup assumptions”,
such as a public-key infrastructure (PKI) or a common reference string (CRS),
where all parties are assumed to have access to some global information that is
trusted to have certain properties. Indeed, as pointed out in [28], the intuitive
guarantee that “running π has the same effect as having access to the trusted
party” no longer holds.

As a first indication of this fact, consider the “deniability” concern, namely,
allowing party A to interact with party B in a way that prevents B from later
“convincing” a third party C that the interaction took place. Indeed, if A and B
interact via an idealized “trusted party” that communicates only with A and B
then deniability is guaranteed in a perfect, idealized way. Thus, intuitively, if A
and B interact via a protocol that emulates the trusted party, then deniability
should hold just the same. When the protocol in question uses no global setup,
this intuition works, in the sense that emulating a trusted party (in most existing
formalisms) automatically implies deniability. However, when global setup is
used, this is no longer the case: There are protocols that emulate such a trusted
party but do not guarantee deniability.

For instance, consider the case of Zero-Knowledge protocols, i.e. protocols
that emulate the trusted party for the “Zero-Knowledge functionality”: Zero-
Knowledge protocols in the plain model are inherently deniable, but most Zero-
Knowledge protocols in the CRS model are completely undeniable whenever the
reference string is public knowledge (see [28]). Similarly, most authentication pro-
tocols (i.e., most protocols that emulate the trusted party that provides ideally
authenticated communication) that use public key infrastructure are not deni-
able, in spite of the fact that ideal authenticated communication via a trusted
party is deniable.

One might think that this “lack of deniability” arises only when the com-
posability guarantees provided by the security model are weak. However, even
very strong notions of composability do not automatically suffice to ensure de-
niability in the presence of global setup. For example, consider the Universal
Composability (UC) security model of [10], which aims to achieve the following,
very strong composability guarantee:

A UC-secure protocol π implementing a trusted party F does not affect
any other protocols more than F does — even when protocols running
concurrently with π are maliciously constructed.

When F is the Zero-Knowledge functionality, this property would seem to guar-
antee that deniability will hold even when the protocol π is used in an arbitrary
manner. Yet, even UC-secure ZK protocols that use a CRS are not deniable
whenever the reference string is globally available. This demonstrates that the
UC notion, in its present formulation, does not protect a secure protocol π from
a protocol π′ that was maliciously designed to interact badly with π, in the case
where π′ can use the same setup as π.

Deniability is not the only concern that remains un-captured in the present
formulation of security in the CRS model. For instance, even UC-secure Zero-



3

Knowledge proofs in the CRS model may not be “adaptively sound” (see [22]),
so perhaps a malicious prover can succeed in proving false statements after see-
ing the CRS, as demonstrated in [1]. As another example, the protocol in [15]
for realizing the single-instance commitment functionality becomes malleable as
soon as two instances use the same reference string (indeed, to avoid this weak-
ness a more involved protocol was developed, where multiple commitments can
explicitly use the same reference string in a specific way). Note that here, a
UC-secure protocol can even affect the security of another UC-secure protocol
if both protocols make reference to the same setup.

This situation is disturbing, especially in light of the fact that some form
of setup is often essential for cryptographic solutions. For instance, most tra-
ditional two-party tasks cannot be UC-realized with no setup [15, 10, 16], and
authenticated communication is impossible without some sort of setup [12]. Fur-
thermore, providing a globally available setup that can be used throughout the
system is by far the most realistic and convenient way to provide setup.
A new formalism. This work addresses the question of how to formalize the
trusted-party definitional paradigm in a way that preserves its intuitive appeal
even for those protocols that use globally available setup. Specifically, our first
contribution is to generalize the UC framework to deal with global setup, so as
to explicitly guarantee that the original meaning of “emulating a trusted party”
is preserved, even when the analyzed protocol is using the same setup as other
protocols that may be maliciously and adaptively designed to interact badly with
it. In particular, the new formalism called simply generalized UC (GUC) security
guarantees deniability and non-malleability even in the presence of global setup.
Informally,

A GUC-Secure protocol π implementing a trusted party F using some
global setup does not affect any other protocols more than F does — even
when protocols running concurrently with π are maliciously constructed,
and even when all protocols use the same global setup.

In a nutshell, the new modeling proceeds as follows. Recall that the UC frame-
work models setup as a “trusted subroutine” of the protocol that uses the setup.
This implicitly means that the setup is local to the protocol instance using it,
and cannot be safely used by any other protocol instance. That modeling, while
mathematically sound, certainly does not capture the real-world phenomenon
of setup that is set in advance and publicly known throughout the system. The
UC with joint state theorem (“JUC Theorem”) of [18] allows several instances of
specifically-designed protocols to use the same setup, but it too does not capture
the case of public setup that can be used by arbitrary different protocols at the
same time.

To adequately capture global setup our new formalism models the setup as
an additional (trusted) entity that interacts not only with the parties running
the protocol, but also with other parties (or, in other words, with the external
environment). This in particular means that the setup entity exists not only as
part of the protocol execution, but also in the ideal process, where the protocol is
replaced by the trusted party. For instance, while in the current UC framework



4

the CRS model is captured as a trusted setup entity that gives the reference
string only to the adversary and the parties running the actual protocol instance,
here the reference string is globally available, i.e. the trusted setup entity also
gives the reference string directly to other parties and the external environment.
Technically, the effect of this modeling is that now the simulator (namely, the
adversary in the ideal process) cannot choose the reference string or know related
trapdoor information.

In a way, proofs of security in the new modeling, even with setup, are remi-
niscent of the proofs of security without setup, in the sense that the only freedom
enjoyed by the simulator is to control the local random choices of the uncorrupted
parties. For this reason we often informally say that GUC-secure protocols that
use only globally available setup are “fully simulatable”. We also remark that
this modeling is in line with the “non-programmable CRS model” in [28].

One might thus suspect that achieving GUC-security “collapses” down to
UC-security without any setup (and its severe limitations). Indeed, as a first re-
sult we extend the argument of [15] to show that no two-party protocol can GUC-
realize the ideal commitment functionality Fcom (namely, emulate the trusted
party that runs the code of Fcom according to the new notion), even in the CRS
model, or in fact with any global setup that simply provides public information.
On the one hand this result is reassuring, since it means that those deniable and
malleable protocols that are secure in the (old) CRS model can no longer be se-
cure according to the new notion. On the other hand, this result brings forth the
question of whether there exist protocols for commitment (or other interesting
primitives) that meet the new notion under any reasonable setup assumption.
Indeed, the analyses of all existing UC-secure commitment protocols seem to use
in an essential way the fact that the simulator has control over the value of the
setup information.
New setup and constructions. Perhaps surprisingly, we answer the realiz-
ability question in the affirmative, in a strong sense. Recall that our impossibility
result shows that a GUC protocol for the commitment functionality must rely
on a setup that provides the parties with some private information. We consider
two alternative setup models which provide such private information in a min-
imal way, and show how to GUC-realize practically any ideal functionality in
any one of the two models.

The first setup model is reminiscent of the “key registration with knowledge
(KRK)” setup from [5], where each party registers a public key with some trusted
authority in a way that guarantees that the party can access the corresponding
secret key. However, in contrast to [5] where the scope of a registered key is
only a single protocol instance (or, alternatively, several instances of specifically
designed protocols), here the registration is done once per party throughout the
lifetime of the system, and the public key can be used in all instances of all the
protocols that the party might run. In particular, it is directly accessible by the
external environment.

We first observe that one of the [5] protocols for realizing Fcom in the KRK
model can be shown to satisfy the new notion, even with the global KRK setup,



5

as long as the adversary is limited to non-adaptive party corruptions. (As demon-
strated in [17], realizing Fcom suffices for realizing any “well-formed” multi-party
functionality.) However, when adaptive party corruptions are allowed, and the
adversary can observe the past internal data of corrupted parties, this protocol
becomes insecure. In fact, the problem seems inherent, since the adversary is
now able to eventually see all the secret keys in the system, even those of parties
that were uncorrupted when the computation took place.

Still, we devise a new protocol that realizes Fcom in the KRK model even
in the presence of adaptive party corruptions, and without any need for data
erasures. The high level idea is to use the [15] commitment scheme with a new
CRS that is chosen by the parties per commitment. The protocol for choosing
the CRS will make use of the public keys held by the parties, in a way that
allows the overall simulation to go through even when the same public keys
are used in multiple instances of the CRS-generation protocol. Interestingly, our
construction does not realize a CRS that is “strong” enough for the original
analysis to go through. Instead, we provide a “weaker” CRS, and provide a
significantly more elaborate analysis. The protocol is similar in spirit to the
coin-tossing protocol of [19], in that it allows the generated random string to
have different properties depending on which parties are corrupted. Even so,
their protocol is not adaptively secure in our model.
Augmented CRS. Next we formulate a new setup assumption, called “aug-
mented CRS (ACRS)” and demonstrate how to GUC-realize Fcom in the ACRS
model, in the presence of adaptive adversaries. As the name suggests, ACRS is
reminiscent of the CRS setup, but is somewhat augmented so as to circumvent
the impossibility result for plain CRS. That is, as in the CRS setup, all par-
ties have access to a short reference string that is taken from a pre-determined
distribution. In addition, the ACRS setup allows corrupted parties to obtain
“personalized” secret keys that are derived from the reference string, their pub-
lic identities, and some “global secret” that’s related to the public string and
remains unknown. It is stressed that only corrupted parties may obtain their
secret keys. This means that the protocol may not include instructions that re-
quire knowledge of the secret keys and, therefore, the protocol interface tn the
ACRS setup is identical to that of the CRS setup.

The main tool in our protocol for realizing Fcom in the ACRS model is a
new identity-based trapdoor commitment (IBTC) protocol. IBTC protocols are
constructed in [2, 32], in the Random Oracle model. In the full version of this
paper [13], we provide a construction of IBTC in the standard model (assuming
only one-way functions), using the Σ-protocol based commitment technique of
Feige [21], where the committer runs the simulator of the Σ-protocol.
Realizing the setup assumptions. “Real world implementations” of the
ACRS and KRK setups can involve a trusted entity (say, a “post office”) that
only publicizes the public value. The trusted entity will also agree to provide the
secret keys to the corresponding parties upon request, with the understanding
that once a party gets hold of its key then it alone is responsible to safeguard
it and use it appropriately (much as in the case of standard PKI). In light of



6

the impossibility of a completely non-interactive setup (CRS), this seems to be
a minimal “interactiveness” requirement from the trusted entity.

Another unique feature of our commitment protocol is that it guarantees
security even if the “global secret” is compromised, as long as this happens after
the commitment phase is completed. In other words, in order to compromise
the overall security, the trusted party has to be actively malicious during the
commitment phase. This point further reduces the trust in the real-world entity
that provides the setup.

Despite the fact that the trusted entity need not be constantly available,
and need not remain trustworthy in the long term, it may still seem difficult
to provide such an interactive entity in many real-world settings. Although it is
impossible to achieve true GUC security with a mere CRS, we observe that the
protocols analyzed here do satisfy some notion of security even if the setup en-
tity remains non-interactive (i.e. when our ACRS setup functionality is instead
collapsed to a standard CRS setup). In fact, although we do not formally prove a
separation, protocols proven secure in the ACRS model seem intuitively more se-
cure than those of [15, 17] even when used in the CRS model! Essentially, in order
to simulate information that could be obtained via a real attack on the protocols
of [15, 17], knowledge of a “global trapdoor” is required. This knowledge enables
the simulator to break the security of all parties (including their privacy). On
the other hand, simulating the information obtained by real attacks on proto-
cols that are proven secure in the ACRS model merely requires some specific
“identity-based trapdoors”. These specific trapdoors used by the simulate allow
it to break only the security of corrupt parties who deviate from the protocol.
Of course, when using a CRS setup in “real life” none of these trapdoors are
available to anyone, so one cannot actually simulate information obtained by an
attacker. Nevertheless, it seems that the actual advantage gained by an attack
which could have been simulated using the more minimal resources required by
protocol simulators in the ACRS model (i.e. the ability to violate the security
only of corrupt parties, as opposed to all parties) is intuitively smaller.
A New Composition Theorem. We present two formulations of GUC se-
curity: one formulation is more general and more “intuitively adequate”, while
the other is simpler and easier to work with. In particular, while the general no-
tion directly considers a multi-instance system, the simpler formulation (called
EUC) is closer to the original UC notion that considers only a single protocol
instance in isolation. We then demonstrate that the two formulations are equiv-
alent. As may be expected, the proof of equivalence incorporates much of the
argumentation involved in the proof of the universal composition theorem. We
also demonstrate that GUC security is preserved under universal composition.
Related work. Relaxed variants of UC security are studied in [30, 8]. These
variants allow reproducing the general feasibility results without setup assump-
tions other than authenticated communication. However, these results provide
significantly weaker security properties than UC-security. In particular, they do
not guarantee security in the presence of arbitrary other protocols, which is the
focus of this work.



7

Alternatives to the CRS setup are studied in [5]. As mentioned above, the
KRK setup used here is based on the one there, and the protocol for GUC-
realizing Fcom for non-adaptive corruptions is taken from there. Furthermore, [5]
informally discuss the deniability properties of their protocol. However, that work
does not address the general concern of guaranteeing security in the presence
of global setup. In particular, it adopts the original UC modeling of setup as a
construct that is internal to each protocol instance.

In a concurrent work, Hofheinz et. al [25] consider a notion of security reminis-
cent of EUC, with similar motivation to the motivation here. They also formulate
a new setup assumption and show how to realize any functionality given that
setup. However, their setup assumption is considerably more involved than ours,
since it requires the trusted entity to interact with the protocol in an on-line,
input-dependent manner. Also, they do not consider adaptive corruptions.
Future work. This work develops the foundations necessary for analyzing
security and composability of protocols that use globally available setup. It also
re-establishes the feasibility results for general computation in this setting. Still,
there are several unexplored research questions here.

One important concern is that of guaranteeing authenticated communication
in the presence of global PKI setup. As mentioned above, this is another example
where the existing notions do not provide the expected security properties (e.g.,
they do not guarantee deniability, whereas the trusted party solution is expressly
deniable). We conjecture that GUC authentication protocols (namely, protocols
that GUC-realize ideally authentic communication channels) that use a global
PKI setup can be constructed by combining the techniques of [26, 15]. However,
we leave full exploration of this problem out of scope for this work.

The notions of key exchange and secure sessions in the presence of global PKI
setup need to be re-visited in a similar way. How can universal composability
(and, in particular, deniability) be guaranteed for such protocols? Also, how
can existing protocols (that are not deniable) be proven secure with globally
available setup?

2 Generalized UC Security

In this section we will provide a high-level overview of our new Generalized UC
(GUC) framework, as well as a useful simplification of GUC called the External-
ized UC (EUC) framework. We begin with a brief review of the concepts behind
the original UC framework of [10] (henceforth referred to as “Basic UC”) before
proceeding to outline our new security frameworks. To keep our discussion at
a high level of generality, we will focus on the notion of protocol “emulation”,
wherein the objective of a protocol π is to emulate another protocol φ. Here,
typically, π is an implementation (such as the actual “real world” protocol) and
φ is a specification (where the “ideal functionality” F that we wish to imple-
ment is computed directly by a trusted entity). Throughout our discussion, all
entities and protocols we consider are “efficient” (i.e. polynomial time bounded
Interactive Turing Machines, in the sense detailed in [11]).



8

The Basic UC Framework. At a very high level, the intuition behind secu-
rity in the basic UC framework is that any adversary A attacking a protocol π
should learn no more information than could have been obtained via the use of
a simulator S attacking protocol φ. Furthermore, we would like this guarantee
to be maintained even if φ were to be used a subroutine of (i.e. composed with)
arbitrary other protocols that may be running concurrently in the networked
environment, and we plan to substitute π for φ in all instances. Thus, we may
set forth a challenge experiment to distinguish between actual attacks on pro-
tocol π, and simulated attacks on protocol φ (referring to these protocols as the
“challenge protocols”). As part of this challenge scenario, we will allow adversar-
ial attacks to be orchestrated and monitored by a distinguishing environment Z
that is also empowered to control the inputs supplied to the parties running the
challenge protocol, as well as to observe the parties’ outputs at all stages of the
protocol execution. One may imagine that this environment represents all other
activity in the system, including the actions of other protocol sessions that may
influence inputs to the challenge protocol (and which may, in turn, be influenced
by the behavior of the challenge protocol). Ultimately, at the conclusion of the
challenge, the environment Z will be tasked to distinguish between adversarial
attacks perpetrated by A on the challenge protocol π, and attack simulations
conducted by S with protocol φ as the challenge protocol instead. If no environ-
ment can successfully distinguish these two possible scenarios, then protocol π
is said to “UC emulate” the protocol φ.

Specifying the precise capabilities of the distinguishing environment Z is
crucial to the meaning of this security notion. We must allow Z to choose the
challenge protocol inputs and observe its outputs (which models the influence of
the environment on the users of the protocol, and vice versa). We must also grant
Z the ability to interact with the attacker (which will be either the adversary, or
a simulation). As demonstrated in [10], granting precisely these capabilities to
Z (even if we allow it to invoke only a single session of the challenge protocol) is
sufficient to achieve the strong guarantees of composition theorem, which states
that any arbitrary instances of the φ that may be running in the network can
be safely substituted with a protocol π that UC emulates φ. Thus, even if we
constrain the distinguisher Z to interactions only with the adversary and a single
session of the challenge protocol (without allowing Z to invoke other protocols at
all), we can already achieve the strong security guarantees we intuitively desired.
Notably, although the challenge protocol may invoke subroutines of its own, it
was not necessary to grant Z any capability to interact with such subroutines.

In order to conceptually modularize the design of protocols, the notion of
“hybrid models” is often introduced into the basic UC framework. A protocol π
is said to be realized “in the G-hybrid model” if π invokes the ideal functionality
G as a subroutine (perhaps multiple times). (As we will soon see below, the
notion of hybrid models greatly simplifies the discussion of UC secure protocols
that require “setup”.) A high-level conceptual view of UC protocol emulation in
a hybrid model is shown in Figure 1.



9

Basic UC (G-hybrid model) – Ideal

Z ED
S φ

_ _ _ _ _ _�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

_ _ _ _ _ _

_ _

G
@A

Basic UC (G-hybrid model) – Real

Z ED
A π

_ _ _ _ _ _�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

_ _ _ _ _ _

_ _

G
@A

Fig. 1. The Basic UC Experiment in the G-hybrid model. A simulator S attacks a single
session of protocol φ running with an ideal subroutine G, whereas an arbitrary “real”
adversary A attacks a session of π running with an ideal subroutine G. The dashed
box encloses protocols where S or A control the network communications, whereas
the solid lines represent a direct Input/Output relationship. (In a typical scenario,
φ would be the ideal protocol for a desired functionality F , whereas π would be a
practical protocol realizing F , with G modeling some “setup” functionality required by
π. Observe that the environment can never interact directly with G, and thus, in this
particular scenario, G is never invoked at all in the ideal world since we are typically
interested in the case where ideal protocol for F does not make use of G.)

Limitations of Basic UC. Buried inside the intuition behind the basic UC
framework is the critical notion that the environment Z is capable of utilizing
its input/output interface to the challenge protocol to mimic the behavior of
other (arbitrary) protocol sessions that may be running in a computer network.
Indeed, as per the result of [10] mentioned in our discussion above, this would
seem to be the case when considering challenge protocols that are essentially
“self-contained”. Such self-contained protocols, which do not make use of any
“subroutines” (such as ideal functionalities) belonging to other protocol sessions,
are called subroutine respecting protocols – and the basic UC framework models
these protocols directly. On the other hand, special considerations would arise
if the challenge protocol utilizes (or transmits) information that is also shared
by other network protocol sessions. An example of such information would be
the use of a global setup, such as a public “common reference string” (CRS)
that is reused from one protocol session to the next, or a standard Public Key
Infrastructure (PKI). Such shared state is not directly modeled by the basic
UC framework discussed above. In fact, the composition theorem of [10] only
holds when considering instances of subroutine respecting protocols (which do
not share state information). Unfortunately, it is impossible to produce UC se-
cure realizations of most useful functionalities without resorting to some setup.
However, to comply with the requirements of the UC framework, the setup would
have to be done on a per-instance basis. This does not faithfully represent the



10

common realization, where the same setup is shared by all instances. There-
fore, previous works handled such “shared state” protocol design situations via
a special proof technique, known as the JUC Theorem [18].

Yet, even the JUC Theorem does not accurately model truly global shared
state information. JUC Theorem only allows for the construction of protocols
that share state amongst themselves. That is, an a-priori fixed set of protocols
can be proven secure if they share state information only with each other. No
security guarantee is provided in the event that the shared state information is
also used by other protocols which the original protocols were not specifically
designed to interact with. Of course, malicious entities may take advantage of this
by introducing new protocols that use the shared state information if the shared
state is publicly available. In particular, protocols sharing global state (i.e. using
global setups) which are modeled in this fashion may not resist adaptive chosen
protocol attacks, and can suffer from a lack of deniability, as we previously
mentioned regarding the protocols of [15], [17], and as is discussed in further
detail in Section 3.2.

The Generalized UC Framework. To summarize the preceding discussion,
the environment Z in the basic UC experiment is unable to invoke protocols that
share state in any way with the challenge protocol. This limitation is unrealistic
in the case of global setup, when protocols share state information with each
other (and indeed, it was shown to be impossible to realize UC-secure protocols
without resort to such tactics [15, 10, 16]). To overcome this limitation, we pro-
pose the Generalized UC (GUC) framework. The GUC challenge experiment is
similar to the basic UC experiment, only with an unconstrained environment. In
particular, we will allow Z to actually invoke and interact with arbitrary proto-
cols, and even multiple sessions of its challenge protocol (which may be useful
to Z in its efforts to distinguish between the two possible challenge protocols).
Some of the protocol sessions invoked by Z may share state information with
challenge protocol sessions, and indeed, they can provide Z with information
about the challenge protocol that it could not have obtained otherwise. The
only remaining limitation on Z is that we prevent it from directly observing
or influencing the network communications of the challenge protocol sessions,
but this is naturally the job of the adversary (which Z directs). Thus, the GUC
experiment allows a very powerful distinguishing environment capable of truly
capturing the behavior of arbitrary protocol interactions in the network, even if
protocols can share state information with arbitrary other protocols. Of course,
protocols that are GUC secure are also composable (this fact follows almost triv-
ially from a greatly simplified version of the composition theorem proof of [11],
the simplifications being due to the ability of the unconstrained environment to
directly invoke other protocol sessions rather than needing to “simulate” them
internally).

The Externalized UC Framework. Unfortunately, since the setting of GUC
is so complex, it becomes extremely difficult to prove security of protocols in our
new GUC framework. Essentially, the distinguishing environment Z is granted



11

a great deal of freedom in its choice of attacks, and any proof of protocol emu-
lation in the GUC framework must hold even in the presence of other arbitrary
protocols running concurrently. To simplify matters, we observe that in practice
protocols which are designed to share state do so only in a very limited fashion
(such as via a single common reference string, or a PKI, etc.). In particular,
we will model shared state information via the use of “shared functionalities”,
which are simply functionalities that may interact with more than one proto-
col session (such as the CRS functionality). For clarity, we will distinguish the
notation for shared functionalities by adding a bar (i.e. we use Ḡ to denote a
shared functionality). We call a protocol π that only shares state information
via a single shared functionality Ḡ a Ḡ-subroutine respecting protocol. Bearing
in mind that it is generally possible to model “reasonable” protocols that share
state information as Ḡ-subroutine respecting protocols, we can make the task
of proving GUC security simpler by considering a compromise between the con-
strained environment of basic UC and the unconstrained environment of GUC.
An Ḡ-externally constrained environment is subject to the same constraints as
the environment in the basic UC framework, only it is additionally allowed to
invoke a single “external” protocol (specifically, the protocol for the shared func-
tionality Ḡ). Any state information that will be shared by the challenge protocol
must be shared via calls to Ḡ (i.e. challenge protocols are Ḡ-subroutine respect-
ing), and the environment is specifically allowed to access Ḡ. Although Z is once
again constrained to invoking a single instance of the challenge protocol, it is
now possible for Z to internally mimic the behavior of multiple sessions of the
challenge protocol, or other arbitrary network protocols, by making use of calls
to Ḡ wherever shared state information is required. Thus, we may avoid the need
for JUC Theorem (and the implementation limitations it imposes), by allowing
the environment direct access to shared state information (e.g. we would allow
it to observe the Common Reference String when the shared functionality is the
CRS functionality). We call this new security notion Externalized UC (EUC)
security, and we say that a Ḡ-subroutine respecting protocol π Ḡ-EUC-emulates
a protocol φ if π emulates φ in the basic UC sense with respect to Ḡ-externally
constrained environments. We show that if a protocol π Ḡ-EUC-emulates φ,
then it also GUC emulates φ (and vice versa, provided that π is Ḡ-subroutine
respecting).

Theorem 1. Let π be any protocol which invokes no shared functionalities other
than (possibly) Ḡ, and is otherwise subroutine respecting (i.e. π is Ḡ-subroutine
respecting). Then protocol π GUC-emulates a protocol φ, if and only if protocol
π Ḡ-EUC-emulates φ.

That is, provided that π only shares state information via a single shared func-
tionality Ḡ, if it merely EUC-emulates φ with respect to that functionality, then
π is a full GUC-emulation of φ! As a special case, we obtain that all basic UC
emulations (which may not share any state information) are also GUC emula-
tions.

Corollary 1. Let π be any subroutine respecting protocol. Then protocol π GUC-
emulates a protocol φ, if and only if π UC-emulates φ.



12

The corollary follows by letting Ḡ be the null functionality, and observing that
the Ḡ-externally constrained environment of the EUC experiment collapses to
become the same environment as that of the basic UC experiment when Ḡ is the
null functionality. Thus, it is sufficient to prove basic UC security for protocols
with no shared state, or Ḡ-EUC security for protocols that share state only via
Ḡ, and we will automatically obtain the full benefits of GUC security.

Figure 2 depicts the differences in the experiments of the UC models we
have just described, in the presence of a single shared functionality Ḡ (of course,
the GUC framework is not inherently limited to special case of only one shared
functionality). We further elaborate the technical details of these new models,
and provide the proof of Theorem 1, in the full version of the paper [13].

We are now in a position to state a strong new composition theorem, which
will directly incorporate the previous result (that proving EUC security is suffi-
cient for GUC security). Let ρ be an arbitrary protocol (not necessarily subrou-
tine respecting!) which invokes φ as a sub-protocol. We will write ρπ/φ to denote
a modified version of ρ that invokes π instead of φ, wherever ρ had previously
invoked φ. We prove the following general theorem in the full version [13]:

Theorem 2 (Generalized Universal Composition). Let ρ, π, φ be PPT multi-
party protocols, and such that both φ and π are Ḡ-subroutine respecting, and π
Ḡ-EUC-emulates φ. Then ρπ/φ GUC-emulates protocol ρ.

We stress that π must merely Ḡ-EUC-emulate φ, but that the resulting com-
posed protocol ρπ/φ fully GUC-emulates ρ, even for a protocol ρ that is not
subroutine respecting.

3 Insufficiency of the Global CRS Model

In this section we demonstrate that a global CRS setup is not sufficient to
GUC-realize even the basic two-party commitment functionality. We then further
elaborate the nature of this insufficiency by considering some weaknesses in the
security of previously proposed constructions in the CRS model. Finally, we
suggest a new “intuitive” security goal, dubbed full simulatability, which we
would like to achieve by utilizing the GUC-security model (and which was not
previously achieved by any protocols in the CRS model).

3.1 Impossibility of GUC-realizing Fcom in the Ḡgcrs model

Recall that many interesting functionalities are unrealizable in the UC frame-
work without any setup assumption. For instance, it is easy to see that the
ideal authentication functionality, Fauth, is unrealizable in the plain model. Fur-
thermore, many two party tasks, such as Commitment, Zero-Knowledge, Coin-
Tossing, Oblivious Transfer and others cannot be realized in the UC framework
by two-party protocols, even if authenticated communication is provided [15, 16,
10].



13

UC with JUC Theorem

Z

A / S π / φ π / φ . . .

_ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _

_ _ _

ED

BC
G

@A

EUC

Z ED

A / S π / φ

_ _ _ _�
�
�
�

�
�
�
�

_ _ _ _

_ _ _

Ḡ
@A

*+()
_______________

/.�����������������

__

GUC

ZGFGFGF ED ED ED
ρ1

@A BC� �

ρ2

@A BC

. . . A / S π / φ π / φ . . .

_ _ _ _ _ _ _ _ _ _ _ _�
�
�
�

�
�
�
�_ _ _ _ _ _ _ _ _ _ _ _

_ _ _

Ḡ
@A BC BC

*+()
_______________

/.�����������������

__

Fig. 2. Comparison of models. Using Basic UC with JUC Theorem to share state, only
copies of the challenge protocol (or other protocols which may be jointly designed a
priori to share G) are allowed to access the common subroutine G, and Z may only in-
teract with the “multi-session” version of the challenge protocol. In the EUC paradigm,
only a single session of the challenge protocol is running, but the shared functionality
Ḡ it uses is accessible by Z. Finally, in the GUC setting, we see the full generality of
arbitrary protocols ρ1, ρ2, . . . running in the network, alongside multiple copies of the
challenge protocol. Observe that both Z, and any other protocols invoked by Z (such
as ρ1), have direct access to Ḡ in the GUC setting. Intuitively, the GUC modeling
seems much closer to the actual structure of networked protocol environments.

As a recourse, the common reference string (CRS) model was used to re-
assert the general feasibility results of [24] in the UC framework. That is, it
was shown that any “well-formed” ideal functionality can be realized in the
CRS model [15, 17]. However, the formulation of the CRS model in these works
postulates a setting where the reference string is given only to the participants in
the actual protocol execution. That is, the reference string is chosen by an ideal
functionality, Gcrs, that is dedicated to a given protocol execution. Gcrs gives
the reference string only to the adversary and the participants in that execution.



14

Intuitively, this formulation means that, while the reference string need not be
kept secret to guarantee security, it cannot be safely used by other protocol
executions. In other words, no security guarantees are given with respect to
executions that use a reference string that was obtained from another execution
rather than from a dedicated instance of Gcrs. (The UC with joint state theorem
of [18] allows multiple executions of certain protocols to use the same instance of
the CRS, but it requires all instances that use the CRS to be carefully designed
to satisfy some special properties.)

In contrast, we are interested in modeling a setting where the same CRS is
globally available to all parties and all protocol executions. This means that a
protocol π that uses the CRS must take into account the fact that the same CRS
may be used by arbitrary other protocols, even protocols that were specifically
designed to interact badly with π. Using the GUC security model defined in
Section 2, we define this weaker setup assumption as a shared ideal functionality
that provides the value of the CRS not only to the parties of a given protocol ex-
ecution, but rather to all parties, and even directly to the environment machine.
In particular, this global CRS functionality, Ḡgcrs, exists in the system both as
part of the protocol execution and as part of the ideal process. Functionality
Ḡgcrs is presented in Figure 3.

Functionality Ḡgcrs

Parameterized by a distribution D, Ḡgcrs proceeds as follows, when activated
by any party:

1. If no value has been previously recorded, choose a value d ←R D, and
record the value d.

2. Return the value d to the activating party.

Fig. 3. The Global Common Reference String functionality. The difference from the
Common Reference String functionality Gcrs of [10, 15] is that Gcrs provides the ref-
erence string only to the parties that take part in the actual protocol execution. In
particular, the environment does not have direct access to the reference string.

We demonstrate that Ḡgcrs is insufficient for reproducing the general feasi-
bility results that are known to hold in the Gcrs model. To exemplify this fact,
we show that no two-party protocol that uses Ḡgcrs as its only setup assumption
GUC-realizes the ideal commitment functionality, Fcom (presented in Figure 4).
The proof, which we provide in the full version of this work [13], follows essen-
tially the same steps as the [15] proof of impossibility of realizing Fcom in the
plain model. The reason that these steps can be carried out even in the pres-
ence of Ḡgcrs is, essentially, that the simulator obtains the reference string from
an external entity (Ḡgcrs), rather than generating the reference string by itself.
We conjecture that most other impossibility results for UC security in the plain
model can be extended in the same way to hold for GUC security in the presence
of Ḡgcrs.



15

Functionality Fcom

Commit Phase: Upon receiving a message (commit, sid, C, V, b) from party
C, where b ∈ {0, 1}, record the value b and send (receipt, sid, C, V ) to
V and the adversary. Ignore any future commit messages.

Reveal Phase: Upon receiving a message (reveal, sid) from C: If a value
b was previously recorded, then send the message (reveal, sid, b) to V
and the adversary and halt. Otherwise, ignore.

Fig. 4. The Commitment Functionality Fcom (see [15])

Theorem 3. There exists no bilateral, terminating protocol π that GUC-realizes
Fcom and uses only the shared functionality Ḡgcrs. This holds even if the com-
munication is ideally authentic.

In fact, it can be shown that the above impossibility result extends beyond
the mere availability of Ḡgcrs to any circumstance where the shared functionality
will only provide information globally (or, yet more generally, the impossibility
holds whenever all the shared information available to protocol participants can
also be obtained by the environment). For instance, this impossibility will hold
even in the (public) random oracle model, which is already so strong that it
cannot truly be realized without the use of a fully interactive trusted party.
Another interpretation of this result is that no completely non-interactive global
setup can suffice for realizing Fcom. The next section studies the problem of
realizing Fcom using setup assumptions with minimal interaction requirements.

3.2 Deniability and Full Simulatability

To demonstrate that the problems with using a global CRS to realize Fcom,
in the fashion of [17], are more than skin deep technicalities that arise only
in the GUC framework we now consider the issue of deniability. Intuitively, a
protocol is said to be “deniable” if it is possible for protocol participants to deny
their participation in a protocol session by arguing that any “evidence” of their
participation (as obtained by other, potentially corrupt protocol participants)
could have been fabricated.

Recalling the intuition outlined in the introduction, we would like realized
protocols to guarantee the same security as the ideal functionalities they realize,
meaning that the adversary will learn nothing more from attacking the protocol
than could be learned from attacking its corresponding ideal functionality. Pro-
tocols realized with such a guarantee are inherently deniable, since a protocol
participant can accurately argue that any information sent during the protocol
session could have been obtained by an adversary using only the output from
the ideal functionality4 in an attack simulation conducted entirely without his
or her actual participation.
4 Of course, if the output of the ideal functionality “incriminates” a user by revealing

some of his secrets, the resulting protocol does not meet our intuitive understanding
of the word “deniable”. Still, the protocol itself may be said to be “as deniable” as
the functionality it realizes.



16

For instance, if we consider the ideal functionality for Zero Knowledge (ZK),
we expect that any secure realization of that functionality should reveal no
information to the adversary beyond the output of the ideal functionality (which
contains only a single bit). In particular, that output can easily be generated
entirely without the help of the prover, and thus the prover should be able to
deny his participation in the protocol, since it reveals no information that could
not have been obtained independently. However, we already know from the result
of [28] that it is impossible to achieve such deniability for ZK in the CRS model.
Indeed, we may see that the UC simulator for ZK functionality in [17] chooses
a fresh CRS, and generates the simulated protocol transcripts with respect to
that, instead of the published real-world CRS. Thus, if a protocol transcript
makes use of the real-world CRS, it could not have been obtained via simulation
(so a successful prover is indeed incriminated by the transcript).

When there is no deniability, the adversary is truly able to obtain some valu-
able information by observing protocol interactions that would not by revealed
by the ideal functionality. Thus we have found a practical example of security
loss that directly results from the relaxations of UC security inherent in the CRS
technique of [17]. We can now clearly see that the impossibility of realizing Fcom

via the CRS model in the GUC setting is due to a meaningful strengthening
of security guarantees (since deniability is guaranteed in the GUC setting, and
that guarantee is not achieved by protocols realized in the CRS model).

On an intuitive level, it might be helpful to consider the issue of deniability in
light of the “real world” resources required in order to run the GUC simulator to
simulate a given protocol session. If the resources required to simulate a protocol
session are readily available, then the protocol is plausibly deniable (since it is
plausible that information obtained from the protocol was the result of a simu-
lation). If the resources are difficult or impossible to obtain, then the protocol
is not plausibly deniable. We wish to employ simulation techniques that require
only minimal resources to conduct a simulation, increasing the plausibility of de-
nials (as well as decreasing the value of any information that an adversary might
obtain by attacking a secure protocol). Thus, we use the term fully simulatable
to refer to any plausibly deniable protocol realized in the GUC framework.

From this vantage point, we observe that the resource required to conduct
the protocol simulations in [17] is a “trapdoor” for the CRS. In particular, the
CRS must be “rigged” with such a trapdoor a priori. Such rigging is certainly
not plausible when there is a trusted party choosing the CRS, and this is in fact
the root of the deniability problem for the CRS model. Furthermore, knowledge
of this trapdoor implies the ability to completely violate security of any protocol
constructed using the techniques of [17], and thus there would be no security
against any entity capable of simulating protocols. Similarly, in the “imaginary
angel” model of [30], the simulator requires access to super-polynomial time
functionalities that are certainly not plausibly available in the real world (and
thus, the deniability problem arises there as well). Indeed, if the “imaginary
angels” of [30] were to somehow be made practical in the real world, all security
would be lost.



17

We comment that, although we do not make any attempt to formalize a
“general” notion of deniability here, the guarantee we seek to provide is that
protocols are “as deniable” in the real world as they would have been in the
ideal world (past works did not satisfy even this basic requirement). In fact, as
we will see, our particular realization of fully simulatable security will guarantee
that even “on line” (interactive) deniability is preserved, since the simulator can
very practically be run in real time. Indeed, as long as an honest party P never
deviates from the protocol, it is not possible for other (even corrupt) protocol
participants to conclusively demonstrate P ’s participation in the protocol session
to a third party, even while the protocol is ongoing!

4 Fully Simulatable General Computation

We now turn our attention to the problem of constructing fully simulatable
GUC-secure protocols. That is, we would like it to be possible for a real-world
adversary to simulate the effects of any attack on a protocol, without actually
attacking the protocol (instead utilizing only the information that would be
revealed by an ideally secure realization). The result of Section 3 implies that
we cannot do this in the CRS model (if we correctly model a globally available
CRS). Thus, we must consider alternative models if we hope to achieve our goal.

To that end, we would like to find reasonable alternative global setup as-
sumptions that allow for realizing interesting tasks. That is, we are looking for
shared functionalities Ḡ (as defined in Section 2), so that on the one hand Ḡ
will be implementable in reality with reasonable trust assumptions, and on the
other hand we will have protocols that GUC-realize interesting functionalities
and still use no setup (i.e., no ideal functionalities) other than Ḡ. We say that
such GUC-secure protocols are “fully simulatable” since the GUC-simulator for
attacking the ideal protocol can, in a very practical sense, be run directly by
the adversary. This allows the adversary to simulate the same information that
can be gotten by attacking any session of the real protocol, without actually
performing any attack.

We first observe that if the system is equipped with a “fully interactive
trusted party” that realizes, say, Fmcom, the multi-session variant of Fcom, by
interacting separately and privately with each session, then we can directly use
the protocol of [17] to GUC-realize any “well-formed” functionality. However,
we would like to find more reasonable global setup assumptions, and in partic-
ular assumptions that require less interaction from the trusted entity. (Indeed,
this realization requires the trusted party to perform strictly more work than
it would by directly computing the desired functionalities, i.e. the trivial real-
ization of ideal model functionalities). Although it is clear that we can achieve
fully simulatable protocols by using highly interactive trusted parties to compute
functionalities, it seems to be a more difficult problem to realize GUC-secure pro-
tocols using an “offline” shared functionality. Indeed, by our earlier impossiblity
results, some degree of interaction would seem to be essential, so we begin by
considering the idea of limiting the interaction to a “registration phase”.



18

4.1 The KRK Model

We observe that the “key registration with knowledge (KRK)” setup of [5], can
be modified to serve as a shared functionality, allowing us to realize any “well-
formed” ideal functionality against non-adaptive (“static”) adversaries using the
techniques of that work. Although the setup phase is interactive (parties must
register their public keys with registration authorities), it is possible to show
(with some minor modifications) that the protocol of [5] can allow the trusted
party to remain “offline” for all subsequent protocol activity.

Functionality Gkrk

Gkrk proceeds as follows, given a (deterministic) key generation function Gen
(with security parameter λ), running with parties P1, . . . , Pn and an adver-
sary S:

Registration: When receiving a message (register, sid, r) from party Pi

that has not previously registered, compute (PKi, SKi)← Genλ(r) and
record the tuple (Pi, PKi, SKi).

Retrieval: When receiving a message (retrieve, sid, Pi) from party Pj

(where j 6= i), if there is a previously recorded tuple of the
form (Pi, PKi, SKi), then return (sid, Pi, PKi) to Pj . Otherwise re-
turn (sid, Pi,⊥) to Pj . When receiving a message (retrieve, sid, Pi)
from party Pi, if there is a previously recorded tuple of the form
(Pi, PKi, SKi), then return (sid, Pi, PKi, SKi) to Pi. Otherwise, return
(sid, Pi,⊥) to Pi.

Fig. 5. The Knowledge-based Key Registration Functionality (similar to that of [5]).
Note that each instance of Gkrk can only be invoked by the parties of a single protocol
session (i.e. with a fixed sid). After converting this ideal functionality to a shared
functionality, Ḡkrk, and restricting retrieval of private keys to corrupt parties only, it
is possible GUC-realize any functionality using only a single public key per-party.

Recall that the KRK setup of [5] is an ideal functionality Gkrk (shown in
Figure 5), that chooses a private and public key pair for each registered party
and lets all parties know the value of the public key. In the natural version
of the KRK setup, parties are also allowed to retrieve their own secret keys.
Since Gkrk is not a shared functionality, each instance of a protocol will have
its own instance of Gkrk, which does not lend itself to easy implementation.
To fix this, we re-formulate Gkrk as a shared functionality, Ḡkrk, that chooses
public keys only once per party – used by all instances. (This modeling makes
Ḡkrk significantly easier to implement in a real system, since only one key is
required for each party.) Furthermore, we add a simple modeling restriction: we
only allow parties to learn their own secret keys if they are corrupt.5 Using this
new Ḡkrk setup, the protocol of [5] works (with minor modifications) even in the
GUC-security model, provided that (a) party corruptions are non-adaptive, and
5 This modeling restriction is discussed in further detail in Section 4.2.



19

(b) all parties with the same PID (party identity) are corrupted together – we
call such corruption pattern PID-wise.

Theorem 4. The [5] protocol GUC-realizes Fzk, even when given access only
to Ḡkrk, as long as the party corruptions are non-adaptive and PID-wise.

The proof of this theorem is by a natural extension of the proof in [5] to
the EUC framework (which is, of course, equivalent to GUC), but surprisingly,
we can achieve a much stronger goal than non-adaptive GUC security with
interactive setup.

4.2 The Augmented CRS Model

Although it may seem that at least an interactive “registration phase” is required
in order to avoid our earlier impossibility result, we show that something even less
interactive will suffice. We propose a further simplification of Ḡkrk, denoted Ḡacrs,
and a protocol that GUC-realizes Fcom (and thus any well-formed functionality)
having access only to Ḡacrs. Unlike Ḡkrk, the Ḡacrs shared functionality does
not require any interaction (much like Gcrs), but merely offers a one-time use
interactive “key retrieval” service to those who choose to use it. Therefore, we
refer to this new setup assumption as the Augmented CRS (ACRS) model. In
particular, protocols realized in the ACRS model will not actually make use of
the key retrieval service, since the model only allows corrupt parties to retrieve
their keys. Thus, we are assured that honest parties need never communicate
interactively with Ḡacrs.

Somewhat counter-intuitively, it is even crucial that uncorrupted parties in
ACRS model never “bother” to obtain their secret keys from the trusted au-
thority (since even an honest party may inadvertently execute a rogue protocol,
which might expose the secret key). Similarly, it is crucial that corrupted parties
have access to their secret keys, since otherwise they would be unable to conduct
attack simulations. (On a side note, security is still guaranteed to honest parties
who obtain their keys and use them to conduct attack simulations provided that
they only use their keys for simulation purposes.) To enforce the protocol design
criteria that honest parties should not require access to their secret keys, we
directly define the Ḡacrs functionality so that it refuses to supply secret keys to
honest parties. (Of course, a direct realization of Ḡacrs by a trusted party can-
not actually determine which parties are honest, yet intuitively this modeling
should still suffice. In fact, it is not problematic even if the real-world trusted
party gives keys to honest parties, as long as they are careful to protect their
own security by keeping their keys secret.)

More formally, our new shared functionality Ḡacrs is parameterized by two
functions, Setup and Extract. It first chooses a random secret value MSK and
a public value PK ← Setup(MSK), and publicizes PK (as a CRS). Next,
whenever a corrupted party P asks for its secret key, Ḡacrs returns the value
SKP ← Extract(PK;P ;MSK). The functionality is presented in Figure 6.



20

Functionality ḠSetup,Extract
acrs

Initialization Phase: At the first activation, compute a Common Refer-
ence String (PK) ← Setup(MSK) for a randomly chosen λ-bit value
MSK, and record the pair (PK, MSK).

Providing the public value: Whenever activated by a party requesting
the CRS, return PK to the requesting party and the adversary.

Dormant Phase: Upon receipt of a message (retrieve, sid, P ) from a
corrupt party P , return the value SKP ← Extract(PK; P ; MSK) to P .
(Receipt of this message from honest parties is ignored.)

Fig. 6. The Identity-Based Augmented CRS Shared Functionality

Comparing Ḡkrk and Ḡacrs. The main difference between Ḡacrs and Ḡkrk (the
global variant of Gkrk) is that in Ḡacrs there is a single public value, whereas in
Ḡkrk an extra public value must be given per party identity. Using a paradigm
analogous to the identity-based encryption of [6], we avoid the use of per-party
public keys and replace them with a single short “master public key” (and in-
deed our constructions use short public keys that depend only on the security
parameter). This property, combined with the fact that the parties who follow
their protocols never obtain their secret keys, makes Ḡacrs very close in spirit to
a global CRS setup as in Ḡgcrs. In fact, in light of the far-reaching impossibility
result for Ḡgcrs, Ḡacrs can be regarded as a “minimum interaction” global setup.

We note that, as pointed out in [5], Ḡkrk can be naturally implemented by
multiple “registration authorities”, where no single authority needs to be fully
trusted by all. (However, we once again stress that Ḡkrk requires all parties, even
those who honestly follow their protocols, to interactively register with a some
authority and obtain a public key.) Similarly, multiple instances of Ḡacrs may
be run by different trusted authorities. Unlike Ḡkrk, however, parties may par-
ticipate in protocols while placing their trust in an arbitrary trusted authority,
without ever having registered with any authority. This is extremely useful for
settings where PKIs are not desirable or easy to implement, and where no single
“global” authority is available (see e.g. [4]).6

In the full version of this work [13], we prove the following result:

Theorem 5. There exists a protocol that GUC-realizes Fcom given access to
Ḡacrs. Party corruptions can be adaptive (and in the non-erasure model), as long
as they are PID-wise.

6 In fact, the protocol we will describe in Section 5 can also support a “graceful failure”
approach similar to that outlined in [5], in the scenario where protocol participants
do not mutually trust any single authority. That is, by using suitable “graceful” tools
(in the case of our protocol, a “graceful” IBTC) , we can ensure full GUC security if
trustworthy authorities are used by all parties, and ordinary stand-alone security for
party P in the case where only party P ’s authority is trustworthy (even if party P ’s
own authority is made completely unavailable after publishing its reference string,
and/or is later corrupted subsequent to the completion of the protocol).



21

Finally, we note that a GUC secure realization of Fcom is indeed sufficient
to GUC-realize any “well-formed” multi-party functionality. This may be ac-
complished by first using Fcom to realize Fzk (as in [17]), and then using Fzk

to realize the “one-to-many” Zero-Knowledge functionality, F1:M
zk (via the tech-

nique of [29]). The protocol compiler from [17] can then be used to yield a
UC-secure realization of any well-formed multi-party functionality in the F1:M

zk -
hybrid model, without using any shared state (thus it is also a GUC-secure
realization by Corollary 1).

5 GUC-Realizing Fcom using the Ḡacrs Global Setup

We now describe the construction of a protocol satisfying the conditions of The-
orem 5, above. When combined with the compiler from [17], such a fully simulat-
able realization of Fcom yields a fully simulatable realization of any well-formed
two-party or multi-party functionality. Furthermore, we show that, in addition to
requiring only the more minimal Ḡacrs setup, our protocol achieves significantly
stronger properties than the fully simulatable protocol from [5] realized in the
Ḡkrk model. (Of course, our protocol can also be trivially modified for use in the
Ḡkrk model, where it will enjoy the same strengthened security guarantees.)

Firstly, our protocol realizing Fcom remains secure even in the presence of
adaptive corruptions (whereas the protocol of [5] does not). Intuitively, adaptive
security seems to be difficult to attain in either the Ḡkrk or Ḡacrs models, since
an adaptive adversary is eventually able to learn nearly all secrets in the system
(save only for the random coins of the trusted party), yet the simulator must
make use of these secrets. Our protocol essentially skirts this difficulty by using
some additional interactivity. Remarkably, the same technique also enables it
to maintain the security of past executions even when the trusted party imple-
menting Ḡacrs is later corrupted (revealing the random coins used to generate
the CRS, leaving the overall system with no secrets at all)! That is, our proto-
col guarantees that past transcripts of protocol interactions can never be used
to compromise the security or deniability of honest parties even if the trusted
party is later corrupted. Security is only lost when the trusted party acts mali-
ciously prior to, or during protocol execution. This kind of “forward security”
with respect to the trusted party further minimizes the trust assumptions re-
quired to realize Ḡacrs in the real-world. For instance, an adversary cannot later
coerce the trusted party into breaking the security of an honest party after the
completion of the protocol. Such forward security cannot be achieved using the
protocol of [5] since knowledge of the secret key allows “extraction” from past
commitments, breaking privacy. Similarly, the protocol of [17] also loses privacy
of past transcripts if the trusted party implementing the CRS setup later reveals
a trapdoor.

5.1 High-level description of the protocol

Our protocol for realizing Fcom in the Ḡacrs shared hybrid model, which we
call Protocol UAIBC (for UC Adaptive Identity-Based Commitment), relies on



22

two new techniques. First, we construct an identity-based trapdoor commitment
(IBTC) which enjoys adaptive security. Then we provide a general transforma-
tion from any IBTC into a protocol that securely implements Fcom.

Constructing IBTC. In the setting of IBTC a single “master-key” is made
public. Additionally, all parties can obtain a private-key that is associated to
their party identifier. (Note that this setting corresponds exactly to the inter-
face of Ḡacrs.) Intuitively, an IBTC is a commitment scheme with the additional
property that a committer who knows the receiver’s secret-key can equivocate
commitments (i.e., it can open up commitments to any value, breaking the bind-
ing property). Furthermore, an adversary that obtains the secret-keys of multiple
parties still should not be able to violate the binding property of commitments
sent to parties for which it has not obtained the secret-key.

Constructions of IBTCs were previously known in the Random Oracle Model
[2, 32]. Here we provide a conceptually simple approach to constructing an adap-
tively secure IBTC from any one-way function, in the standard model. Our ap-
proach relies on the use of Σ-protocols [14], in an approach based on that of
[21] (and perhaps surprisingly can result in a very practical protocol). On a
very high-level (and very oversimplified) the general idea is as follows: 1) let
the master-key be a public-key for a signature scheme, 2) let the secret-key for
a party be a signature on its party identifier, and 3) construct a commitment
scheme where the reveal phase consists of a “proof” that either the revealed
value is consistent with the value committed to, or the committer knows a sig-
nature on the receiver’s party identifier (this “proof” must also “hide” which of
these two statements actually holds). We mention that the actual instantiation
of this idea is somewhat more involved, in order to guarantee adaptive security,
and we provide the full details of our construction in [13].

From IBTC to GUC Commitments. Recall that a protocol for realizing
Fcom must intuitively satisfy two properties (in addition to the traditional bind-
ing and hiding properties of any commitment scheme): 1) it must be equivocable,
and 2) it must be extractable. We show how to transform any “equivocable” com-
mitment scheme (such as an IBTC) into a protocol for securely realizing Fcom

(for single bit commitments). Previously similar types of transformations have
appeared in the literature (e.g., [17], [7]). Unfortunately all such transformations
either require some additional non-global setup (and are thus not applicable in
out setting), or only work in the case of static security. We now turn our focus to
the protocol UAIBC, which GUC-realizes the Fcom functionality via a novel trans-
formation of an IBTC from a mere equivocable commitment (in the standard
model), to an equivocable and extractable commitment secure against adap-
tive corruptions in the GUC-security model. We remark that our transformation
technique can be employed by substituting any merely equivocable commitment
scheme (such as standard public key based trapdoor commitments) in place of
the IBTC in our protocol, and will yield a scheme that is both equivocable and
extractable, a general approach that may prove useful in many other contexts.



23

On a high-level, protocol UAIBC proceeds as follows. The committer Pi and
receiver Pj first perform a coin-tossing to generate a public-key K for a dense
crypto-system. This coin-tossing requires the receiver to use an IBTC, and has
the property that if the committer is corrupted, the outcome of the coin-tossing
can be set to any value. After a completed coin-tossing, the committer commits
to a single bit b using an IBTC (let c denote this commitment), and additionally
sends an auxiliary string e: e is either a random string in case b = 1, and an
encryption to the decommitment information of c if b = 0. (We here require that
the encryption scheme used has pseudo-random ciphertexts.) In the reveal phase,
the committer is required to provide correct decommitment information for c,
and additionally reveal the value encrypted in e in case b = 0. We graphically
illustrate the operation of this protocol in Figure 7. In the full version of this
work [13], we prove that UAIBC GUC-realizes the Fcom ideal functionality in a
fully simulatable manner (even for adaptive adversaries in the non-erasure set-
ting), and in addition features the aforementioned “forward security” property.

Step # Pi(b) Pj

Commit

(1)
commit,sid,Pi,Pj //

(2)
ckoo k1←r{0, 1}λ

(ck, dk) = Com(Pi; k1)

(3) k2 ←r {0, 1}λ
k2 //

(4)
dkoo K = k1 ⊕ k2

(5)

k′
1 = Open(Pi; ck, dk)

K = k′
1 ⊕ k2

(c, d) = Com(Pj ; b)
if b = 0 e = EK(r; d)
if b = 1 e = random

c, e //

Reveal

(1&2) if b = 0
if b = 1

b=0, d, r //
b=1, d //

if b = 0 EK(r; d)
?
=e

Open(Pj ; c, d)
?
=b

Fig. 7. Operation of Protocol UAIBC, with party Pi committing bit b to party Pj . Note
that Com and Open are operations for an IBTC (the first input is the identity of the
recipient), and EK is a Dense OT-PRC secure encryption using key K (the first input
is the random coins fed to the encryption operation, and the second is the plaintext).
Steps 2 to 4 of the Commit phase are essentially a coin-tossing protocol, whereas the
subsequent steps are similar to the protocol of [17].



24

6 Acknowledgments

The authors would like to thank Philip MacKenzie, Johan H̊astad, and Silvio Mi-
cali for insightful observations, as well as various anonymous referees for helpful
comments and suggestions.

References

1. M. Abe, and S. Fehr. Perfect NIZK with Adaptive Soundness. In Proc. of TCC,
2007.

2. G. Ateniese and B. de Medeiros. Identity-based Chameleon Hash
and Applications. Proc. of Financial Cryptography, 2004. Available at
http://eprint.iacr.org/2003/167/.

3. D. Beaver. Secure Multi-party Protocols and Zero-Knowledge Proof Systems Tol-
erating a Faulty Minority. in J. Cryptology, vol 4., pp. 75–122, 1991.

4. B. Barak, R. Canetti, Y. Lindell, R. Pass and T. Rabin. Secure Computation
Without Authentication. In CRYPTO 2005, Springer-Verlag (LNCS 3621), pages
361-377, 2005.

5. B. Barak, R. Canetti, J. Nielsen and R. Pass. Universally composable protocols
with relaxed set-up assumptions. In Proc. of FOCS, 2004.

6. D. Boneh, and M. Franklin. Identity Based Encryption from the Weil Pairing. In
Proc. of Crypto, 2001.

7. B. Barak and Y. Lindell. Strict Polynomial-time Simulation and Extraction. In
SIAM J. Comput., 33(4), pp. 783-818, 2004.

8. B. Barak and A. Sahai, How To Play Almost Any Mental Game Over the Net
- Concurrent Composition via Super-Polynomial Simulation. In Proc. of FOCS,
2005.

9. R. Canetti. Security and composition of multi-party cryptographic protocols. Jour-
nal of Cryptology, Vol. 13, No. 1, winter 2000.

10. R. Canetti. Universally Composable Security: A New paradigm for Cryptographic
Protocols. In Proc. of FOCS, pages 136–145, 2001.

11. R. Canetti. Universally Composable Security: A New paradigm for Cryptographic
Protocols. In Cryptology ePrint Archive, Report 2000/067, revised edition from
Dec. 2005. Available at: http://eprint.iacr.org/2000/067

12. R. Canetti. Universally Composable Signature, Certification, and Authentication.
In Proc. of CSFW, p. 219, 2004.

13. R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally Composable Security
with Global Setup. In Cryptology ePrint Archive, Report 2006/432. Available at:
http://eprint.iacr.org/2006/432

14. R. Cramer, I. Damgard, B. Schoenmakers. Proofs of Partial Knowledge and Sim-
plified Design of Witness Hiding Protocols. In Proc. of CRYPTO, pp. 174–187,
1994.

15. R. Canetti and M. Fischlin. Universally Composable Commitments. In Proc. of
Crypto, pages 19–40, 2001.

16. R. Canetti, E. Kushilevitz and Y. Lindell. On the Limitations of Universally Com-
posable Two-Party Computation Without Set-Up Assumptions. In Proc. of Euro-
crypt, Springer-Verlag (LNCS 2656), pp. 68–86, 2003.

17. R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-
Party and Multi-Party Secure Computation. In Proc. of STOC, pp. 494–503, 2002.



25

18. R. Canetti and T. Rabin. Universal Composition with Joint State. In Proc. of
Crypto 2003, Springer-Verlag, pp. 265-281, 2003.

19. I. Damgard and J. Nielsen. Perfect Hiding and Perfect Binding Universally Com-
posable Commitment Schemes with Constant Expansion Factor. In Proc. of
Crypto, Springer-Verlag, pp. 581–596, 2002.

20. Y. Dodis and S. Micali. Parallel Reducibility for Information-Theoretically Secure
Computation. In Proc. of Crypto, Springer-Verlag (LNCS 1880), pp. 74–92, 2000.

21. U. Feige. Alternative Models for Zero Knowledge Interactive Proofs. Ph.D. thesis,
Weizmann Institute of Science, Rehovot, Israel, 1990.

22. U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge
Proofs Based on a Single Random String. In Proc. of FOCS, 1990.

23. S. Goldwasser, and L. Levin. Fair Computation of General Functions in Presence
of Immoral Majority. CRYPTO ’90, LNCS 537, 1990.

24. O. Goldreich, S. Micali, and A. Wigderson. How to Solve any Protocol Problem.
In Proc.of STOC, 1987.

25. D. Hofheinz, J. Muller-Quade, and D. Unruh. Universally Composable Zero-
Knowledge Arguments and Commitments from Signature Cards. In Proc. of the
5th Central European Conference on Cryptology MoraviaCrypt 2005, June 2005.

26. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated Verifier Proofs and their
Applications. In Proc. of Eurocrypt, Springer-Verlag, 1996.

27. S. Micali and P. Rogaway. Secure Computation. unpublished manuscript, 1992.
Preliminary version in CRYPTO ’91, LNCS 576, 1991.

28. R. Pass. On Deniabililty in the Common Reference String and Random Oracle
Model. In Proc. of Crypto, LNCS 2729, pp. 216–337, 2003.

29. R. Pass. Bounded-Concurrent Secure Multi-Party Computation with a Dishonest
Majority. In Proc. of STOC, pp. 232–241, 2004.

30. M. Prabhakaran and A. Sahai. New Notions of Security: Achieving Universal Com-
posability without Trusted Setup. In Proc. of STOC, 2004.

31. B. Pfitzmann and M. Waidner. Composition and Integrity Preservation of Secure
Reactive Systems. In Proc. of ACM CCS, pages 245–254, 2000.

32. F. Zhang, R. Safavi-Naini and W. Susilo. ID-Based Chameleon Hashes from Bilin-
ear Pairings. Available at http://eprint.iacr.org/2003/208/.


