
Security Against Covert Adversaries: Efficient
Protocols for Realistic Adversaries?

Yonatan Aumann and Yehuda Lindell

Department of Computer Science
Bar-Ilan University, Israel

{aumann,lindell}@cs.biu.ac.il

Abstract. In the setting of secure multiparty computation, a set of mu-
tually distrustful parties wish to securely compute some joint function of
their private inputs. The computation should be carried out in a secure
way, meaning that no coalition of corrupted parties should be able to
learn more than specified or somehow cause the result to be “incorrect”.
Typically, corrupted parties are either assumed to be semi-honest (mean-
ing that they follow the protocol specification) or malicious (meaning
that they may deviate arbitrarily from the protocol). However, in many
settings, the assumption regarding semi-honest behavior does not suffice
and security in the presence of malicious adversaries is excessive and
expensive to achieve.

In this paper, we introduce the notion of covert adversaries, which we
believe faithfully models the adversarial behavior in many commercial,
political, and social settings. Covert adversaries have the property that
they may deviate arbitrarily from the protocol specification in an at-
tempt to cheat, but do not wish to be “caught” doing so. We provide a
definition of security for covert adversaries and show that it is possible to
obtain highly efficient protocols that are secure against such adversaries.
We stress that in our definition, we quantify over all (possibly malicious)
adversaries and do not assume that the adversary behaves in any par-
ticular way. Rather, we guarantee that if an adversary deviates from the
protocol in a way that would enable it to “cheat”, then the honest parties
are guaranteed to detect this cheating with good probability. We argue
that this level of security is sufficient in many settings.

1 Introduction

1.1 Background

In the setting of secure multiparty computation, a set of parties with private in-
puts wish to jointly compute some functionality of their inputs. Loosely speaking,
the security requirements of such a computation are that (i) nothing is learned
from the protocol other than the output (privacy), (ii) the output is distributed
according to the prescribed functionality (correctness), and (iii) parties cannot

?
Work supported in part by an Infrastructures grant from the Ministry of Science, Israel. The full
version of this paper is available from the Cryptology ePrint Archive.

make their inputs depend on other parties’ inputs. Secure multiparty compu-
tation forms the basis for a multitude of tasks, including those as simple as
coin-tossing and agreement, and as complex as electronic voting, electronic auc-
tions, electronic cash schemes, anonymous transactions, remote game playing
(a.k.a. “mental poker”), and privacy-preserving data mining.

The security requirements in the setting of multiparty computation must
hold even when some of the participating parties are adversarial. It has been
shown that, with the aid of suitable cryptographic tools, any two-party or mul-
tiparty function can be securely computed [23, 12, 10, 3, 6], even in the presence
of very strong adversarial behavior. However, the efficiency of the computation
depends dramatically on the adversarial model considered. Classically, two main
categories of adversaries have been considered:

1. Malicious adversaries: these adversaries may behave arbitrarily and are not
bound in any way to following the instructions of the specified protocol. Pro-
tocols that are secure in the malicious model provide a very strong security
guarantee, as honest parties are “protected” irrespective of the adversarial
behavior of the corrupted parties.

2. Semi-honest adversaries: these adversaries correctly follow the protocol spec-
ification, yet may attempt to learn additional information by analyzing the
transcript of messages received during the execution. Security in the pres-
ence of semi-honest adversaries provides only a weak security guarantee, and
is not sufficient in many settings. Semi-honest adversarial behavior primarily
models inadvertent leakage of information, and is suitable only where par-
ticipating parties essentially trust each other, but may have other concerns.

Secure computation in the semi-honest adversary model can be carried out very
efficiently, but, as mentioned, provides weak security guarantees. Regarding ma-
licious adversaries, it has been shown that, under suitable cryptographic assump-
tions, any multiparty probabilistic polynomial-time functionality can be securely
computed for any number of malicious corrupted parties [12, 10]. However, this
comes at a price. These feasibility results of secure computation typically do not
yield protocols that are efficient enough to actually be implemented and used
in practice (particularly if standard simulation-based security is required). Their
importance is more in telling us that it is perhaps worthwhile searching for other
efficient protocols, because we at least know that a solution exists in principle.
However, the unfortunate state of affairs today – many years after these feasi-
bility results were obtained – is that very few truly efficient protocols exist for
the setting of malicious adversaries. Thus, we believe that some middle ground
is called for: an adversary model that accurately models adversarial behavior in
the real world, on the one hand, but for which efficient, secure protocols can be
obtained, on the other.

1.2 Our Work – Covert Adversaries

In this work, we introduce a new adversary model that lies between the semi-
honest and malicious models. The motivation behind the definition is that in

many real-world settings, adversaries are willing to actively cheat (and as such
are not semi-honest), but only if they are not caught (and as such they are not
arbitrarily malicious). This, we believe, is the case in many business, financial,
political and diplomatic settings, where honest behavior cannot be assumed,
but where the companies, institutions and individuals involved cannot afford
the embarrassment, loss of reputation, and negative press associated with being
caught cheating. It is also the case, unfortunately, in many social settings, e.g.
elections for a president of the country-club. Finally, in remote game playing,
players may also be willing to actively cheat, but would try to avoid being caught,
or else they may be thrown out of the game. In all, we believe that this type
of covert adversarial behavior accurately models many real-world situations.
Clearly, with such adversaries, it may be the case that the risk of being caught is
weighed against the benefits of cheating, and it cannot be assumed that players
would avoid being caught at any price and under all circumstances. Accordingly,
our definition explicitly models the probability of catching adversarial behavior;
a probability that can be tuned to the specific circumstances of the problem.
In particular, we do not assume that adversaries are only willing to risk being
caught with negligible probability, but rather allow for much higher probabilities.

The definition. Our definition of security is based on the classical ideal/real
simulation paradigm. Loosely speaking, our definition provides the following
guarantee. Let 0 < ε ≤ 1 be a value (called the deterrence factor). Then, any at-
tempt to cheat by an adversary is detected by the honest parties with probability
at least ε. Thus, provided that ε is sufficiently large, an adversary that wishes
not to be caught cheating, will refrain from attempting to cheat, lest it be caught
doing so. Clearly, the higher the value of ε, the greater the probability that the
adversary is caught and thus the greater the deterrent to cheat. We therefore
call our notion security in the presence of covert adversaries with ε-deterrent. Note
that the security guarantee does not preclude successful cheating. Indeed, if the
adversary decides to cheat then it may gain access to the other parties’ private
information or bias the result of the computation. The only guarantee is that
if it attempts to cheat, then there is a fair chance that it will be caught doing
so. This is in contrast to standard definitions, where absolute privacy and secu-
rity are guaranteed, for the given type of adversary. We remark that by setting
ε = 1, our definition can be used to capture a requirement that cheating parties
are always caught.

When attempting to translate the above described basic approach into a
formal definition, we obtain three different possible formulations, which form a
hierarchy of security guarantees. In Section 3 we present the three formulations,
and discuss the relationships between them and between the standard definitions
of security for semi-honest and malicious adversaries. We also present modular
sequential composition theorems (like that of [4]) for all of our definitions. Such
composition theorems are important as security goals within themselves and as
tools for proving the security of protocols.

Protocol constructions. As mentioned, the aim of this work is to provide
a definition of security for which it is possible to construct highly efficient pro-

tocols. We demonstrate this fact by presenting a generic protocol for secure
two-party computation that is only mildly less efficient than the protocol of
Yao [23], which is secure only for semi-honest adversaries. The first step of our
construction is a protocol for oblivious transfer that is based on homomorphic en-
cryption schemes. Highly efficient protocols under this assumption are known [1,
17]. However, these protocols do not achieve simulation-based security. Rather,
only privacy is guaranteed (with the plus that privacy is preserved even in the
presence of fully malicious adversaries). Having constructed an oblivious trans-
fer protocol that meets our definition, we use it in the protocol of Yao [23]. We
modify Yao’s protocol so that two garbled circuits are sent, and then a random
one is opened in order to check that it was constructed correctly. Our basic pro-
tocol achieves deterrent ε = 1/2, but can be extended to greater values of ε at
a moderate expense in efficiency. (For example, 10 copies of the circuit yields
ε = 9/10.)

Protocol efficiency. The protocol we present offers a great improvement in
efficiency, when compared to the best known results for the malicious adversary
model. The exact efficiency depends on the variant used in the definition of covert
adversary security. For the weakest variant, our protocol requires only twice the
amount of work and twice the bandwidth of the basic protocol of [23] for semi-
honest adversaries. Specifically, it requires only a constant number of rounds, a
single oblivious transfer for each input bit, and has communication complexity
O(n|C|) where n is the security parameter and |C| is the size of the circuit
being computed. For the intermediate variant, the complexity is slightly higher,
requiring twice the number of oblivious transfers than in the weakest variant.
For the strongest variant, the complexity increases to n oblivious transfers for
each input bit. This is still much more efficient than any known protocol for the
case of malicious adversaries. We view this as a “proof of concept” that highly
efficient protocols are achievable in this model, and leave the construction of
such protocols for specific tasks of interest for future work.

1.3 Related Work

The idea of allowing the adversary to cheat as long as it will be detected was first
considered by [9] who defined a property called t-detectability; loosely speaking,
a protocol fulfilling this property provides the guarantee that no coalition of t
parties can cheat without being caught. The work of [9] differs to ours in that
(a) they consider the setting of an honest majority, and (b) their definition is
not simulation based. Another closely related work to ours is that of [5] that
considers honest-looking adversaries. Such adversaries may deviate arbitrarily
from the protocol specification, but only if this deviation cannot be detected.
Our definition differs from that of [5] in a number of important ways. First,
we quantify over all adversaries, and not only over adversaries that behave in
a certain way. Second, our definition provides guarantees even for adversaries
that may be willing to risk being caught cheating with non-negligible (or even
constant) probability. Third, we place the onus of detecting any cheating by an

adversary on the protocol, and not on the chance that the honest parties will
analyze the distribution of the messages generated by the corrupted parties. (See
Section 3 for more discussion on why these differences are important.) Finally,
we remark that [5] considered a more stringent setting where all parties are
either malicious or honest-looking. In contrast, we consider a relaxation of the
adversary model (where parties are either fully honest or covert).

We remark that the idea of allowing an adversary to cheat with non-negligible
probability as long as it will be caught with good probability has been mentioned
many times in the literature; see [15, 20] for just two examples. We stress, how-
ever, that none of these works formalized this idea. Furthermore, our experience
in proving our protocol secure is that simple applications of cut-and-choose do
not meet our definition (and there are actual attacks that can be carried out on
the cut-and-choose technique used in [20], for example).

Our work studies a weaker definition of security than the standard one.
Weaker definitions have been used before in order to construct efficient proto-
cols for specific problems. However, in the past these relaxed definitions typically
have not followed the simulation paradigm, but rather have considered privacy
via indistinguishability (and sometimes correctness); see [7] for one example. Our
work takes a completely different approach.

2 Secure Multiparty Computation – Standard Definition

In this section we briefly present the standard definition for secure multiparty
computation and refer to [10, Chapter 7] for more details and motivating dis-
cussion. The following description and definition is based on [10], which in turn
follows [13, 21, 2, 4].

Multiparty computation. A multiparty protocol problem is cast by specify-
ing a random process that maps sets of inputs to sets of outputs (one for each
party). We refer to such a process as a functionality and denote it f : ({0, 1}∗)m →
({0, 1}∗)m, where f = (f1, . . . , fm). That is, for every vector of inputs x =
(x1, . . . , xm), the output-vector is a random variable y = (f1(x), . . . , fm(x)) rang-
ing over vectors of strings. The ith party Pi, with input xi, wishes to obtain fi(x).
We sometimes denote such a functionality by (x) 7→ (f1(x), . . . , fm(x)). Thus,
for example, the oblivious transfer functionality is denoted by ((x0, x1), σ) 7→
(λ, xσ), where (x0, x1) is the first party’s input, σ is the second party’s input,
and λ denotes the empty string (meaning that the first party has no output).

Security of protocols (informal). The security of a protocol is analyzed
by comparing what an adversary can do in a real protocol execution to what
it can do in an ideal scenario that is secure by definition. This is formalized by
considering an ideal computation involving an incorruptible trusted third party to
whom the parties send their inputs. The trusted party computes the functionality
on the inputs and returns to each party its respective output (in order to model
the possibility of early aborting, the adversary receives its outputs first and then
can decide if the honest parties also receive output). Loosely speaking, a protocol

is secure if any adversary interacting in the real protocol (where no trusted third
party exists) can do no more harm than if it was involved in the above-described
ideal computation. We consider malicious adversaries and static corruptions in
all of our definitions in this paper.

Execution in the ideal model. Let the set of parties be P1, . . . , Pm and let
I ⊆ [m] denote the indices of the corrupted parties, controlled by an adversary
A. An ideal execution proceeds as follows:

Inputs: Each party obtains an input; the ith party’s input is denoted xi. The
adversary A receives an auxiliary input denoted z (and we assume that it
knows the length of all inputs).

Send inputs to trusted party: Any honest party Pj sends its received input
xj to the trusted party. The corrupted parties controlled by A may either
abort, send their received input, or send some other input of the same length
to the trusted party. This decision is made by A and may depend on the
values xi for i ∈ I and its auxiliary input z. Denote the vector of inputs sent
to the trusted party by w (note that w does not necessarily equal x).
If the trusted party does not receive m valid inputs (including the case that
one of the inputs equals ⊥), it replies to all parties with a special symbol ⊥
and the ideal execution terminates. Otherwise, the execution proceeds to the
next step.

Trusted party sends outputs to adversary: The trusted party computes
(f1(w), . . . , fm(w)) and sends fi(w) to party Pi, for all i ∈ I (i.e., to all
corrupted parties).

Adversary instructs trusted party to continue or halt: A sends either
continue or halt to the trusted party. If it sends continue, the trusted
party sends fj(w) to party Pj , for all j /∈ I (i.e., to all honest parties).
Otherwise, if it sends halt, the trusted party sends ⊥ to all parties Pj for
j /∈ I.

Outputs: An honest party always outputs the message it obtained from the
trusted party. The corrupted parties output nothing. The adversary A out-
puts any arbitrary (probabilistic polynomial-time computable) function of
the initial inputs {xi}i∈I and the messages {fi(w)}i∈I obtained from the
trusted party.

Let f : ({0, 1}∗)m → ({0, 1}∗)m be an m-party functionality, where f = (f1, . . . ,
fm), let A be a non-uniform probabilistic polynomial-time machine, and let
I ⊆ [m] be the set of corrupted parties. Then, the ideal execution of f on inputs
x, auxiliary input z to A and security parameter n, denoted idealf,A(z),I(x, n),
is defined as the output vector of the honest parties and the adversary A from
the above ideal execution.

Execution in the real model. We next consider the real model in which a
real m-party protocol π is executed (and there exists no trusted third party). In
this case, the adversary A sends all messages in place of the corrupted parties,
and may follow an arbitrary polynomial-time strategy. In contrast, the honest
parties follow the instructions of π.

Let f be as above and let π be an m-party protocol for computing f . Fur-
thermore, let A be a non-uniform probabilistic polynomial-time machine and
let I be the set of corrupted parties. Then, the real execution of π on inputs x,
auxiliary input z to A and security parameter n, denoted realπ,A(z),I(x, n), is
defined as the output vector of the honest parties and the adversary A from the
real execution of π.

Security as emulation of a real execution in the ideal model. Having
defined the ideal and real models, we can now define security of protocols. We
will consider executions where all inputs are of the same length (see discussion
in [10]), and will therefore say that a vector x = (x1, . . . , xm) is balanced if for
every i and j it holds that |xi| = |xj |.

Definition 1 (secure multiparty computation): Let f and π be as above. Pro-
tocol π is said to securely compute f with abort in the presence of malicious ad-
versaries if for every non-uniform probabilistic polynomial-time adversary A for
the real model, there exists a non-uniform probabilistic polynomial-time adver-
sary S for the ideal model, such that for every I ⊆ [m], every balanced vector
x ∈ ({0, 1}∗)m, and every auxiliary input z ∈ {0, 1}∗:

{
idealf,S(z),I(x, n)

}
n∈IN

c≡ {
realπ,A(z),I(x, n)

}
n∈IN

where
c≡ indicates computational indistinguishability.

3 Definitions – Security with Covert Adversaries

3.1 Motivation

The standard definition of security (see Definition 1) is such that all possible
(polynomial-time) adversarial behavior is simulatable. In contrast, as we have
mentioned, here we wish to model the situation that parties may cheat. However,
if they do so, they are likely to be caught. There are a number of ways of
defining this notion. In order to motivate ours, we begin with a somewhat naive
implementation of the notion, and show its shortcoming.

First attempt: Define an adversary to be covert if the distribution over the
messages that it sends during an execution is computationally indistinguishable
from the distribution over the messages that an honest party would send. Then
quantify over all covert adversaries A for the real world (rather than all adver-
saries).1 A number of problems arise with this definition. First, the fact that the
distribution generated by the adversary can be distinguished from the distribu-
tion generated by honest parties does not mean that the honest parties indeed
detect this. This is due to the fact that the honest parties may not have an effi-
cient distinguisher; it is only guaranteed that there exists one. Furthermore, in
order to guarantee that the honest parties detect the cheating, they would have
1

We remark that this is the conceptual approach taken by [5], and that there are important choices
that arise when attempting to formalize the approach. In any case, as we have mentioned, the
work of [5] differs greatly because their aim was to model all parties as somewhat adversarial.

to analyze all traffic during an execution. However, this analysis cannot be part
of the protocol because then the distinguishers used by the honest parties would
be known (and potentially bypassed). Another problem is that, as mentioned in
the introduction, adversaries may be willing to risk being caught with more than
negligible probability, say 10−6. With such an adversary, the definition would
provide no security guarantee. In particular, the adversary may be able to always
learn all parties’ inputs, and only risk being caught in one run in a million.

Second attempt. To solve the aforementioned problems, we first we require
that the protocol itself be responsible for detecting cheating. Specifically, in the
case that a party Pi attempts to cheat, the protocol may instruct the honest
parties to output a message saying that “party Pi has cheated” (we require that
this only happens if Pi indeed cheated). This solves the first problem. To solve
the second problem, we explicitly quantify the probability that an adversary is
caught cheating. Roughly, given a parameter ε, a protocol is said to be secure
against covert adversaries with ε-deterrent if any cheating adversary will necessar-
ily be caught with probability at least ε.

This definition captures the spirit of what we want, but is still problematic.
To illustrate the problem, consider an adversary that plays honestly with prob-
ability 0.99, and cheats otherwise. Such an adversary can only ever be caught
with probability 0.01 (because otherwise it is honest). If ε = 1/2 for example,
then such an adversary must be caught with probability 0.5, which is impossi-
ble. We therefore conclude that an absolute parameter cannot be used, and the
probability of catching the adversary must be related to the probability that it
cheats.

Final definition. We thus arrive at the following approach. First, as mentioned,
we require that the protocol itself be responsible for detecting cheating. That
is, if a party Pi successfully cheats, then with good probability (ε), the honest
parties in the protocol will all receive a message that “Pi cheated”. Second,
we do not quantify only over adversaries that are covert (i.e., those that are not
detected cheating by the protocol). Rather, we allow all possible adversaries, even
completely malicious ones. Then, we require either that this malicious behavior
can be successfully simulated (as in Definition 1), or that the honest parties
will receive a message that cheating has been detected, and this happens with
probability at least ε times the probability that successful cheating takes place.
In other words, when an adversarial attack is carried out, we are guaranteed
that one of the following two happens:

1. The attack fails: this event is represented by the fact that the adversary can
simulate the interaction on its own, and so the attack cannot yield any more
than what is possible in the ideal model.

2. The attack succeeds: in this case we are guaranteed that with good proba-
bility (and this probability is a parameter in the definition), the adversarial
parties will be caught.

We stress that in the second case, the adversary may actually learn secret infor-
mation or cause some other damage. However, since it is guaranteed that such a

strategy will likely be caught, there is strong motivation to refrain from carrying
it out.

As it turns out, the above intuition can be formalized in three different ways,
which form a hierarchy of security guarantees. Since we view the definitional part
of this work as of no less importance than the protocol constructions, we present
all three formulations. In practice, the practitioner should choose the formulation
that best suites her needs, and for which sufficiently efficient protocols exists. All
three definitions are based on the ideal/real simulation paradigm, as presented
in Section 2. We now present the definitions in order of security, starting with
the weakest (least secure) one.

3.2 Version 1: Failed Simulation Formulation

The first formulation we present is based on allowing the simulator to fail some-
times, where by “fail” we mean that its output distribution is not indistinguish-
able from the real one. This corresponds to an event of successful cheating. How-
ever, we guarantee that the probability that the adversary is caught cheating is
at least ε times the probability that the simulator fails. The details follow.

Recall that we call a vector balanced if all of its items are of the same length.
In addition, we denote the output vector of the honest parties and adversary A
in an ideal execution of f by idealf,A(z),I(x, n), where x is the vector of inputs, z
is the auxiliary input to A, I is the set of corrupted parties, and n is the security
parameter. Finally, we denote the analogous outputs in a real execution of π by
realπ,A(z),I(x, n). We begin by defining what it means to “detect cheating”:

Definition 2 Let π be an m-party protocol, let A be an adversary, and let I be
the index set of the corrupted parties. A party Pj is said to detect cheating in π if
its output in π is corruptedi; this event is denoted outputj(realπ,A(z),I(x)) =
corruptedi. The protocol π is called detection accurate if for every j, k /∈ I, the
probability that Pj outputs corruptedk is negligible.

We require that all protocols be detection accurate (meaning that only corrupted
parties can be “caught cheating”). This is crucial because otherwise a party that
is detected cheating can just claim that it is due to a protocol anomaly and not
because it really cheated. The definition follows:

Definition 3 (security – failed simulation formulation): Let f and π be as in
Definition 1, and let ε : IN → [0, 1] be a function. Protocol π is said to securely
compute f in the presence of covert adversaries with ε-deterrent if it is detection
accurate and if for every non-uniform probabilistic polynomial-time adversary
A for the real model, there exists a non-uniform probabilistic polynomial-time
adversary S for the ideal model such that for every I ⊆ [m], every balanced
vector x ∈ ({0, 1}∗)m, every auxiliary input z ∈ {0, 1}∗, and every non-uniform
polynomial-time distinguisher D, there exists a negligible function µ(·) such that,

Pr
[
∃i ∈ I ∀j /∈ I : outputj(realπ,A(z),I(x, n)) = corruptedi

]

≥ ε(n) ·
∣∣∣Pr

[
D(idealf,S(z),I(x, n)) = 1

]
− Pr

[
D(realπ,A(z),I(x, n)) = 1

]∣∣∣− µ(n)

The parameter ε indicates the probability that successful adversarial behavior
is detected (observe that when such a detection occurs, all honest parties must
detect the same corrupted party). Clearly, the closer ε is to one, the higher the
deterrence to cheat, and hence the level of security, assuming covert adversaries.
Note that the adversary can decide to never be detected cheating, in which
case the ideal and real distributions are guaranteed to be computationally
indistinguishable, as in the standard definition of security. In contrast, it can
choose to cheat with some noticeable probability, in which case the ideal and
real output distribution may be distinguishable (while guaranteeing that the
adversary is caught with good probability). This idea of allowing the ideal and
real models to not be fully indistinguishable in order to model “allowed cheating”
was used in [11].

We stress that the definition does not require the simulator to “fail” with
some probability. Rather, it is allowed to fail with a probability that is at most
1/ε times the probability that the adversary is caught cheating. As we shall see,
this is what enables us to construct highly efficient protocols. We also remark
that due to the required detection accuracy, the simulator cannot fail when the
adversary behaves in a fully honest-looking manner (because in such a case,
no honest party will output corruptedi). Thus, security is always preserved in
the presence of adversaries that are willing to cheat arbitrarily, as long as their
cheating is not detected.

Cheating and aborting. It is important to note that according to the above
definition, a party that halts mid-way through the computation may be con-
sidered a “cheat”. Arguably, this may be undesirable due to the fact that an
honest party’s computer may crash (such unfortunate events may not even be
that rare). Nevertheless, we argue that as a basic definition it suffices. This is
due to the fact that it is possible for all parties to work by storing their input
and random-tape on disk before they begin the execution. Then, before sending
any message, the incoming messages that preceded it are also written to disk.
The result of this is that if a party’s machine crashes, it can easily reboot and
return to its previous state. (In the worst case the party will need to request a
retransmit of the last message if the crash occurred before it was written.) We
therefore believe that honest parties cannot truly hide behind the excuse that
their machine crashed (it would be highly suspicious that someone’s machine
crashed in an irreversible way that also destroyed their disk at the critical point
of a secure protocol execution).

Despite the above, it is possible to modify the definition so that honest halting
is never considered cheating. This modification only needs to be made to the
notion of “detection accuracy” and uses the notion of a fail-stop party who acts
semi-honestly, except that it may halt early.

Definition 4 A protocol π is non-halting detection accurate if it is detection
accurate as in Definition 2 and if for every honest party Pj and fail-stop party
Pk, the probability that Pj outputs corruptedk is negligible.

The definition of security in the presence of covert adversaries can then be mod-
ified by requiring non-halting detection accuracy. We remark that although this
strengthening is highly desirable, it may also be prohibitive. For example, we
are able to modify our main protocol so that it meets this stronger definition.
However, in order to do so, we need to assume fully secure oblivious transfer, for
which highly efficient (fully simulatable) protocols are not really known.

3.3 Version 2: Explicit Cheat Formulation

The drawback of Definition 3 is that it allows the adversary to decide whether to
cheat as a function of the honest parties’ inputs or of the output. This is undesir-
able since there may be honest parties’ inputs for which it is more “worthwhile”
for the adversary to risk being caught. We therefore wish to force the adversary
to make its decision about whether to cheat obliviously of the honest parties’
inputs. This brings us to an alternate definition, which is based on redefining
the ideal functionality so as to explicitly include the option of cheating. Aside
from overcoming the input dependency problem this alternate formulation has
two additional advantages. First, it makes the security guarantees more explicit.
Second, it makes it easy to prove a sequential composition theorem.

We modify the ideal model in the following way. Let ε : IN → [0, 1] be a
function. Then, the ideal execution with ε proceeds as follows:

Inputs: Each party obtains an input; the ith party’s input is denoted by xi;
we assume that all inputs are of the same length, denoted n. The adversary
receives an auxiliary-input z.

Send inputs to trusted party: Any honest party Pj sends its received input
xj to the trusted party. The corrupted parties, controlled by A, may either
send their received input, or send some other input of the same length to the
trusted party. This decision is made by A and may depend on the values xi

for i ∈ I and the auxiliary input z. Denote the vector of inputs sent to the
trusted party by w.

Abort options: If a corrupted party sends wi = aborti to the trusted party as
its input, then the trusted party sends aborti to all of the honest parties and
halts. If a corrupted party sends wi = corruptedi to the trusted party as its
input, then the trusted party sends corruptedi to all of the honest parties
and halts.

Attempted cheat option: If a corrupted party sends wi = cheati to the
trusted party as its input, then the trusted party sends to the adversary
all of the honest parties’ inputs {xj}j /∈I . Furthermore, it asks the adversary
for outputs {yj}j /∈I for the honest parties. In addition,
1. With probability ε, the trusted party sends corruptedi to the adversary

and all of the honest parties.
2. With probability 1− ε, the trusted party sends undetected to the adver-

sary and the outputs {yj}j /∈I to the honest parties (i.e., for every j /∈ I,
the trusted party sends yj to Pj).

The ideal execution then ends at this point.

If no wi equals aborti, corruptedi or cheati, the ideal execution continues
below.

Trusted party answers adversary: The trusted party computes (f1(w), . . . ,
fm(w)) and sends fi(w) to A, for all i ∈ I.

Trusted party answers honest parties: After receiving its outputs, the ad-
versary sends either aborti for some i ∈ I, or continue to the trusted party. If
the trusted party receives continue then it sends fj(w) to all honest parties
Pj (j /∈ I). Otherwise, if it receives aborti for some i ∈ I, it sends aborti to
all honest parties.

Outputs: An honest party always outputs the message it obtained from the
trusted party. The corrupted parties output nothing. The adversary A out-
puts any arbitrary (probabilistic polynomial-time computable) function of
the initial inputs {xi}i∈I and the messages obtained from the trusted party.

The output of the honest parties and the adversary in an execution of the above
ideal model is denoted by idealcε

f,S(z),I(x, n).
Notice that there are two types of “cheating” here. The first is the classic

abort, except that unlike in Definition 1, the honest parties here are informed as
to who caused the abort. Thus, although it is not possible to guarantee fairness
here, we do achieve that an adversary who aborts after receiving its output is
“punished” in the sense that its behavior is always detected.2 The other type of
cheating in this ideal model is more serious for two reasons: first, the ramifica-
tions of the cheat are greater (the adversary may learn all of the parties’ inputs
and may be able to determine their outputs), and second, the cheating is only
guaranteed to be detected with probability ε. Nevertheless, if ε is high enough,
this may serve as a deterrent. We stress that in the ideal model the adversary
must decide whether to cheat obliviously of the honest-parties inputs and before
it receives any output (and so it cannot use the output to help it decide whether
or not it is “worthwhile” cheating). We define:

Definition 5 (security – explicit cheat formulation): Let f , π and ε be as in
Definition 3. Protocol π is said to securely compute f in the presence of covert
adversaries with ε-deterrent if for every non-uniform probabilistic polynomial-
time adversary A for the real model, there exists a non-uniform probabilistic
polynomial-time adversary S for the ideal model such that for every I ⊆ [m],
every balanced vector x ∈ ({0, 1}∗)m, and every auxiliary input z ∈ {0, 1}∗:

{
idealcε

f,S(z),I(x, n)
}

n∈IN

c≡
{

realπ,A(z),I(x, n)
}

n∈IN

Definition 5 and detection accuracy. We note that in Definition 5 it is not
necessary to explicitly require that π be detection accurate because this is taken
care of in the ideal model (in an ideal execution, only a corrupted party can
send a cheati input). However, if non-halting detection accuracy is desired (as in
Definition 4), then this should be explicitly added to the definition.
2

Note also that there are two types of abort: in one the honest parties receive aborti and in the
second they receive corruptedi. This is included to model behavior by the real adversary that
results in it being caught cheating with probability greater than ε (and not with probability
exactly ε as when the ideal adversary sends a cheati message).

3.4 Version 3: Strong Explicit Cheat Formulation

The third, and strongest version follows the same structure and formulation of
the previous version (Version 2). However, we make the following slight, but
important change to the ideal model. In the case of an attempted cheat, if
the trusted party sends corruptedi to the honest parties and the adversary (an
event which happens with probability ε), then the adversary does not obtain
the honest parties’ inputs. Thus, if cheating is detected, the adversary does not
learn anything and the result is essentially the same as a regular abort. This
is in contrast to Version 2, where a detected cheat may still be successful. (We
stress that in the “undetected” case here, the adversary still learns the honest
parties’ private inputs and can set their outputs.) We denote the resultant ideal
model by idealscε

f,S(z),I(x, n) and have the following definition:

Definition 6 (security – strong explicit cheat formulation): Let f , π and ε be as
in Definition 3. Protocol π is said to securely compute f in the presence of covert
adversaries with ε-deterrent if for every non-uniform probabilistic polynomial-
time adversary A for the real model, there exists a non-uniform probabilistic
polynomial-time adversary S for the ideal model such that for every I ⊆ [m],
every balanced vector x ∈ ({0, 1}∗)m, and every auxiliary input z ∈ {0, 1}∗:

{
idealscε

f,S(z),I(x, n)
}

n∈IN

c≡
{

realπ,A(z),I(x, n)
}

n∈IN

The difference between the regular and strong explicit cheat formulations is
perhaps best exemplified in the case that ε = 1. In both versions, all potentially
successful cheating attempt are detected. However, in the regular formulation,
the adversary may learn the honest parties’ private inputs (albeit, while being
detected). In the strong formulation, in contrast, the adversary learns nothing
when it is detected. Since it is always detected, this means that full security is
achieved.

3.5 Relations Between Security Models

Relations between covert security definitions. It is not difficult to show
that the three security definitions for covert adversaries constitute a strict hi-
erarchy, with version 1 being strictly weaker than version 2, which is strictly
weaker than version 3. We explicitly prove this in the full version of the paper.

Relation to the malicious and semi-honest models. As a sanity check
regarding our definitions, we present two propositions that show the relation
between security in the presence of covert adversaries and security in the presence
of malicious and semi-honest adversaries.

Proposition 7 Let π be a protocol that securely computes some functionality f
with abort in the presence of malicious adversaries, as in Definition 1. Then, π
securely computes f in the presence of covert adversaries with ε-deterrent, for
any of the three formulations and for every 0 ≤ ε ≤ 1.

This proposition follows from the simple observation that according to Defini-
tion 1, there exists a simulator that always succeeds in its simulation. Thus,
Definition 3 holds even if the probability of detecting cheating is 0. Likewise,
for Definitions 5 and 6 the same simulator works (there is simply no need to
ever send a cheat input). Next, we consider the relation between covert and
semi-honest adversaries.

Proposition 8 Let π be a protocol that securely computes some functionality
f in the presence of covert adversaries with ε-deterrent, for any of the three
formulations and for ε ≥ 1/poly(n). Then, π securely computes f in the presence
of semi-honest adversaries.

This proposition follows from the fact that due to the requirement of detec-
tion accuracy, no party outputs corruptedi when the adversary is semi-honest.
Since ε ≥ 1/poly(n) this implies that the real and ideal distributions can be
distinguished with at most negligible probability, as is required for semi-honest
security. We stress that if ε = 0 (or is negligible) then the definition of covert
adversaries requires nothing, and so the proposition does not hold for this case.

We conclude that, as one may expect, security in the presence of covert
adversaries with ε-deterrent lies in between security in the presence of malicious
adversaries and security in the presence of semi-honest adversaries.

Strong explicit cheat formulation and the malicious model. The fol-
lowing proposition shows that the strong explicit cheat formulation converges to
the malicious model as ε approaches 1.

Proposition 9 Let π be a protocol. Then π securely computes some functional-
ity f in the presence of covert adversaries with ε = 1 under Definition 6 if and
only if it securely computes f with abort in the presence of malicious adversaries.

This is true since, by definition, either the adversary does not attempt cheating,
in which case the ideal execution is the same as in the regular ideal model, or it
attempts cheating, in which case it is caught with probability 1 and the protocol
is aborted. In both cases, the adversary gains no advantage, and the outcome
can be simulated in the standard ideal model. (There is one technicality here
relating to whether the output of an honest party due to an abort is ⊥, or
abort/corrupted. In order for the proposition to go through, we actually have to
modify the basic ideal model so that aborti is received rather than ⊥.)

3.6 Modular Sequential Composition

Sequential composition theorems for secure computation are important for two
reasons. First, they constitute a security goal within themselves. Second, they are
useful tools that help in writing proofs of security. As such, we believe that when
presenting a new definition, it is of great importance to also prove an appropriate
composition theorem for that definition. In our case, we obtain composition
theorems that are analogous to that of [4] for all three of our definitions. The
exact formulation of these theorems and the proofs appear in the full version.

4 Secure Two-Party Computation

In this section, we show how to securely compute any two-party functionality
in the presence of covert adversaries. We have three different protocols, one for
each of the three different security definitions. We first present the protocol for
the strong explicit cheat formulation, which provides ε = 1/2-deterrent. The
variations for the other models are minor and will be presented later. In all
cases, the deterrent can be boosted to 1− 1/p(n) for any polynomial p(·), with
an additional price in complexity, as will be explained later.

The protocol is based on Yao’s protocol for semi-honest adversaries [23]. We
will base our description on the write-up of [18] of this protocol, and due to
lack of space we will assume familiarity with it. The protocol uses an oblivious
transfer (OT) protocol that is secure in the presences of covert adversaries. In
the full version, we prove the following theorem (via a highly efficient protocol):

Theorem 10 Assume the existence of semantically secure homomorphic en-
cryption schemes with errorless decryption. Then, for any k = poly(n) there
exists a secure protocol for computing the parallel string oblivious transfer func-
tionality ((x0

1, x
1
1), . . . , (x

0
n, xn

1), (σ1, . . . , σn)) 7→ (λ, (xσ1
1 , . . . , xσn

n)) in the pres-
ence of covert adversaries with ε-deterrent for ε = 1− 1

k , under any of the three
security definitions.

4.1 The Protocol

The original protocol of Yao is not secure when the parties may be malicious.
Intuitively, there are two main reasons for this. First, the circuit constructor P1

may send P2 a garbled circuit that computes a completely different function.
Second, the oblivious transfer protocol that is used when the parties can be
malicious must be secure for this case. The latter problem is solved here by
using the protocol guaranteed by Theorem 10. The first problem is solved by
having P1 send P2 two garbled circuits. Then, P2 asks P1 to open one of the
circuits at random, in order to check that it is correctly constructed. (This takes
place before P1 sends the keys corresponding to its input, so nothing is revealed
by opening one of the circuits.) The protocol then proceeds similarly to the semi-
honest case. The main point here is that if the unopened circuit is correct, then
this will constitute a secure execution that can be simulated. However, if it is
not correct, then with probability 1/2 party P1 will have been caught cheating
and so P2 will output corrupted1. While the above intuition forms the basis for
our protocol, the actual construction of the appropriate simulator is somewhat
delicate, and requires a careful construction of the protocol. We note some of
these subtleties hereunder.

First, it is crucial that the oblivious transfers are run before the garbled
circuit is sent by P1 to P2. This is due to the fact that the simulator sends a
corrupted P2 a fake garbled circuit that evaluates to the exact output received
from the trusted party (and only this output), as described in [18]. However, in
order for the simulator to receive the output from the trusted party, it must first

send it the input used by the corrupted P2. This is achieved by first running the
oblivious transfers, from which the simulator is able to extract the corrupted
P2’s input.

The second subtlety relates to an issue we believe may be a problem for many
other implementations of Yao that use cut-and-choose. The problem is that the
adversary can construct (at least in theory) a garbled circuit with two sets of
keys, where one set of keys decrypt the circuit to the specified one and another
set of keys decrypt the circuit to an incorrect one. This is a problem because
the adversary can supply “correct keys” to the circuits that are opened and
“incorrect keys” to the circuit (or circuits) that are computed. Such a strategy
cannot be carried out without risk of detection for the keys that are associated
with P2’s input because these keys are obtained by P2 in the oblivious transfers
before the garbled circuits are even sent (thus if incorrect keys are sent for one of
the circuits, P2 will detect this if that circuit is opened). However, it is possible
for a corrupt P1 to carry out this strategy for the input wires associated with
its own input. We prevent this by having P1 commit to these keys and send the
commitments together with the garbled circuits. Then, instead of P1 just sending
the keys associated with its input, it sends the appropriate decommitments.

A third subtlety that arises is connected to the difference between Defini-
tions 3 and 5 (where the latter is the stronger definition where the decision by
the adversary to cheat is not allowed to depend on the honest parties’ inputs
or on the output). Consider a corrupted P1 that behaves exactly like an honest
P1 except that in the oblivious transfers, it inputs an invalid key in the place
of the key associated with 0 as the first bit of P2. The result is that if the first
bit of P2’s input is 1, then the protocol succeeds and no problem arises. How-
ever, if the first bit of P2’s input is 0, then the protocol will always fail and P2

will always detect cheating. Thus, P1’s decision to cheat may depend on P2’s
private input, something that is impossible in the ideal models of Definitions 5
and 6. In summary, this means that the protocol achieves Definition 3 (with
ε = 1/2) but not Definition 5. In order to solve this problem, we use a circuit
that computes the function g(x1, x

1
2, . . . , x

n
2) = f(x1,⊕n

i=1x
i
2), instead of a cir-

cuit that directly computes f . Then, upon input x2, party P2 chooses random
x1

2, . . . , x
n−1
2 and sets xn

2 = (⊕n−1
i=1 xi

2) ⊕ x2. This makes no difference to the re-
sult because ⊕n

i=1x
i
2 = x2 and so g(x1, x

1
2, . . . , x

n
2) = f(x1, x2). However, this

modification makes every bit of P2’s input uniform when considering any proper
subset of x1

2, . . . , x
n
2 . This helps because as long as P1 does not provide invalid

keys for all n shares of x2, the probability of failure is independent of P2’s actual
input (because any set of n − 1 shares is independent of x2). If, on the other
hand, P2 attempts to provide invalid keys for all the n shares, then it is caught
with probability almost 1. This method was previously used in [19]. We are now
ready to describe the actual protocol.

Protocol 11 (two-party computation of a function f):

– Inputs: Party P1 has input x1 and party P2 has input x2, where |x1| = |x2|.
In addition, both parties have a security parameter n. For simplicity, we will
assume that the lengths of the inputs are n.

– Auxiliary input: Both parties have the description of a circuit C for inputs
of length n that computes the function f . The input wires associated with x1

are w1, . . . , wn and the input wires associated with x2 are wn+1, . . . , w2n.
– The protocol:

1. Parties P1 and P2 define a new circuit C ′ that receives n + 1 inputs
x1, x

1
2, , . . . , x

n
2 each of length n, and computes the function f(x1,⊕n

i=1x
i
2).

Note that C ′ has n2 + n input wires. Denote the input wires associ-
ated with x1 by w1, . . . , wn, and the input wires associated with xi

2 by
win+1, . . . , w(i+1)n, for i = 1, . . . , n.

2. Party P2 chooses n − 1 random strings x1
2, . . . , x

n−1
2 ∈R {0, 1}n and

defines xn
2 = (⊕n−1

i=1 xi
2) ⊕ x2, where x2 is P2’s original input (note that

⊕n
i=1x

i
2 = x2). The value z2

def= x1
2, . . . , x

n
2 serves as P2’s new input of

length n2 to C ′.
3. Party P1 chooses two sets of 2n2 random keys by running G(1n), the key

generator for the encryption scheme:

k̂0
n+1, . . . , k̂

0
n2+n k̃0

n+1, . . . , k̃
0
n2+n

k̂1
n+1, . . . , k̂

1
n2+n k̃1

n+1, . . . , k̃
1
n2+n

4. P1 and P2 run n2 executions of an oblivious transfer protocol, as follows.
In the ith execution, party P1 inputs the pair

(
[k̂0

n+i, k̃
0
n+i], [k̂

1
n+i, k̃

1
n+i]

)

and party P2 inputs the bit zi
2. (Note, P2 receives for output the keys

k̂
zi
2

n+i and k̃
zi
2

n+i.) The executions are run using a parallel oblivious transfer
functionality, as in Theorem 10. If a party receives a corruptedi or aborti
message as output from the oblivious transfer, it outputs it and halts.

5. Party P1 constructs two garbled circuits G(C ′)0 and G(C ′)1 using in-
dependent randomness. The keys to the input wires wn+1, . . . , wn2+n

in the garbled circuits are taken from above (i.e., in G(C ′)0 they are
k̂0

n+1, k̂
1
n+1, . . . , k̂

0
n2+n, k̂1

n2+n, and in G(C ′)1 they are k̃0
n+1, k̃

1
n+1, . . . ,

k̃0
n2+n, k̃1

n2+n). Let k̂0
1, k̂

1
1, . . . , k̂

0
n, k̂1

n be the keys associated with P1’s in-
put in G(C ′)0 and k̃0

1, k̃
1
1, . . . , k̃

0
n, k̃1

n the analogous keys in G(C ′)1. Then,
for every i ∈ {1, . . . , n} and b ∈ {0, 1}, party P1 computes ĉb

i = Com(k̂b
i ; r̂

b
i)

and c̃b
i = Com(k̃b

i ; r̃
b
i), where Com is a perfectly-binding commitment

scheme and Com(x; r) denotes a commitment to x using randomness r.
P1 sends the garbled circuits to P2 together with all of the above com-
mitments. The commitments are sent as two vectors of pairs; in the first
vector the ith pair is {ĉ0

i , ĉ
1
i } in a random order, and in the second vector

the ith pair is {c̃0
i , c̃

1
i } in a random order.

6. Party P2 chooses a random bit b ∈R {0, 1} and sends b to P1.
7. P1 sends P2 all of the keys for the inputs wires w1, . . . , wn2+n of the

garbled circuit G(C ′)b, together with the associated mappings and the
decommitment values. (I.e. if b = 0, then party P1 sends (k̂0

1, 0), (k̂1
1, 1),

. . . , (k̂0
n2+n, 0), (k̂1

n2+n, 1) and r̂0
1, r̂

1
1, . . . , r̂

0
n, r̂1

n for the circuit G(C ′)0.)

8. P2 checks the decommitments to the keys associated with w1, . . . , wn,
decrypts the entire circuit (using the keys and mappings that it received)
and checks that it is exactly the circuit C ′ derived from the auxiliary
input circuit C. In addition, it checks that the keys that it received in the
oblivious transfers match the correct keys that it received in the opening
(i.e., if it received (k̂, k̃) in the ith oblivious transfer, then it checks that

k̂ = k̂
zi
2

n+i if G(C ′)0 was opened, and k̃ = k̃
zi
2

n+i if G(C ′)1 was opened).
If all the checks pass, it proceeds to the next step. If not, it outputs
corrupted1 and halts. In addition, if P2 does not receive this message at
all, it outputs corrupted1.

9. P1 sends decommitments to the input keys associated with its input for
the unopened circuit. That is, if b = 0, then P1 sends P2 the keys and
decommitment values (k̃x1

1
1 , r̃

x1
1

1), . . . , (k̃xn
1

n , r̃
xn
1

n) to P2. Otherwise, if b=1,

then P2 sends the keys (k̂x1
1

1 , r̂
x1
1

1), . . . , (k̂xn
1

n , r̂
xn
1

n).
10. P2 checks that the values received are valid decommitments to the com-

mitments received above. If not, it outputs abort1. If yes, it uses the keys
to compute C ′(x1, z2) = C ′(x1, x

1
2, . . . , x

n
2) = C(x1, x2), and outputs the

result. If the keys are not correct (and so it is not possible to compute
the circuit), or if P2 doesn’t receive this message at all, it outputs abort1.

Note that steps 7–10 are actually a single step of P1 sending a message to
P2, followed by P2 carrying out a computation.
If any party fails to receive a message as expected during the execution, it
outputs aborti (where Pi is the party who failed to send the message). This
holds unless the party is explicitly instructed above to output corrupted instead
(as in Step 8).

We have the following theorem:

Theorem 12 Let f be any probabilistic polynomial-time function. Assume that
the encryption scheme used to generate the garbled circuits has indistinguish-
able encryptions under chosen-plaintext attacks (and has an elusive and effi-
ciently verifiable range), and that the oblivious transfer protocol used is secure
in the presence of covert adversaries with 1/2-deterrent by Definition 6. Then,
Protocol 11 securely computes f in the presence of covert adversaries with 1/2-
deterrent by Definition 6.

The full proof of this theorem can be found in the full version.

4.2 Protocols for the Other Security Definitions

We present more efficient protocols for the two other security formulations (ver-
sions 1 and 2) which are more efficient. The protocols are essentially identical
to the one described above, with the only difference being the number of shares
used to split the inputs of P2 in step 2:

– For the failed-simulation formulation (Version 1), we do not split the input of
P2 at all and use the original inputs (i.e., the original circuit C is used). This
reduces the number of oblivious transfers from n2 to n. The revised protocol
provides security for covert adversaries in the failed simulation formulation
with deterrence 1/2.

– For the explicit cheat formulation (not strong) (Version 2), we split the input
of P2 into 2 shares, instead of n. Note again that this reduces the number of
oblivious transfers from n2 to 2n. The revised protocol provides security for
covert adversaries in the explicit cheat formulation with deterrence 1/4.

4.3 Higher Deterrence Values

For all three versions, it is possible to boost the deterrence value to 1−1/poly(n),
with an increased price in performance. Let p(·) be a polynomial. Then, Proto-
col 11 can be modified so that a deterrent of 1− 1/p(n) is obtained, as follows.
First, we use an oblivious transfer protocol that is secure in the presence of
covert adversaries with deterrent ε = 1− 1/p(n). Then, Protocol 11 is modified
by having P1 send p(n) garbled circuits to P2 and then P2 randomly asking P1

to open all circuits except one. Note that when doing so it is not necessary to
increase the number of oblivious transfers, because the same oblivious transfer
can be used for all circuits. This is important since the number of oblivious
transfers is a dominant factor in the complexity. The modification yields a de-
terrent ε = 1 − 1/p(n) and thus can be used to obtain a high deterrent factor.
For example, using 10 circuits the deterrence is 9/10.

4.4 Non-Halting Detection Accuracy

It is possible to modify Protocol 11 so that it achieves non-halting detection
accuracy; see Definition 4. Before describing how we do this, notice that the
reason that we need to recognize a halting-abort as cheating in Protocol 11 is
that if P1 generates one faulty circuit, then it can always just refuse to continue
(i.e., abort) in the case that P2 asks it to open the faulty circuit. This means that
if aborting is not considered cheating, then a corrupted P1 can form a strategy
whereby it is never detected cheating, but succeeds in actually cheating with
probability 1/2. In order to solve this problem, we construct a method whereby
P1 does not know if it will be caught or not. We do so by having P2 receive the
circuit opening via a fully secure oblivious transfer protocol, rather than having
P1 send it explicitly. This forces P1 to either abort before learning anything,
or to risk being caught with probability 1/2. The details are provided in the
full version. The price of this modification is that of one additional fully secure
oblivious transfer and the replacement of all of the original oblivious transfer
protocols with fully secure ones. (Of course, we could use an oblivious transfer
protocol that is secure in the presence of covert adversaries with non-halting
detection accuracy, but we do not know how to construct one.) Since fully-secure
oblivious transfer is expensive, this is a considerable overhead.

References

1. W. Aiello, Y. Ishai and O. Reingold. Priced Oblivious Transfer: How to Sell
Digital Goods. In EUROCRYPT 2001, Springer-Verlag (LNCS 2045), pages
119–135, 2001.

2. D. Beaver. Foundations of Secure Interactive Computing. In CRYPTO’91,
Springer-Verlag (LNCS 576), pages 377–391, 1991.

3. M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In 20th STOC, pages
1–10, 1988.

4. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143–202, 2000.

5. R. Canetti and R. Ostrovsky. Secure Computation with Honest-Looking Parties:
What If Nobody Is Truly Honest? In 31st STOC, pages 255–264, 1999.

6. D. Chaum, C. Crépeau and I. Damgard. Multi-party Unconditionally Secure
Protocols. In 20th STOC, pages 11–19, 1988.

7. B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan. Private Information Re-
trieval. Journal of the ACM, 45(6):965–981, 1998.

8. S. Even, O. Goldreich and A. Lempel. A Randomized Protocol for Signing
Contracts. In Communications of the ACM, 28(6):637–647, 1985.

9. M.K. Franklin and M. Yung. Communication Complexity of Secure Computa-
tion. In 24th STOC, 699–710, 1992.

10. O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications.
Cambridge University Press, 2004.

11. O. Goldreich and Y. Lindell. Session-Key Generation using Human Passwords
Only. Journal of Cryptology, 19(3):241–340, 2006.

12. O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game –
A Completeness Theorem for Protocols with Honest Majority. In 19th STOC,
pages 218–229, 1987.

13. S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence
of Immoral Majority. In CRYPTO’90, Springer-Verlag (LNCS 537), 77–93, 1990.

14. S. Goldwasser and Y. Lindell. Secure Computation Without Agreement. Journal
of Cryptology, 18(3):247–287, 2005.

15. Y. Ishai, J. Kilian, K. Nissim and E. Petrank. Extending Oblivious Transfers
Efficiently. In CRYPTO 2003, Springer-Verlag (LNCS 2729), pp. 145–161, 2003

16. Y. Ishai, E. Kushilevitz, Y. Lindell and E. Petrank. Black-Box Constructions
for Secure Computation. In 38th STOC, pages 99–108, 2006.

17. Y.T. Kalai. Smooth Projective Hashing and Two-Message Oblivious Transfer.
In EUROCRYPT 2005, Springer-Verlag (LNCS 3494) pages 78–95, 2005.

18. Y. Lindell and B. Pinkas. A Proof of Yao’s Protocol for Secure Two-Party Com-
putation. To appear in the Journal of Cryptology. Cryptology ePrint Archive,
Report 2004/175, 2004.

19. Y. Lindell and B. Pinkas. An Efficient Protocol for Secure Two-Party Compu-
tation in the Presence of Malicious Adversaries. Manuscript, 2006.

20. D. Malkhi, N. Nisan, B. Pinkas and Y. Sella. Fairplay – A Secure Two-Party
Computation System. In the 13th USENIX, pages 287–302, 2004.

21. S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript, 1992.
22. M. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. Memo TR-81,

Aiken Computation Laboratory, Harvard U., 1981.
23. A. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages 162–167,

1986.

