
On the Necessity of Rewinding in
Secure Multiparty Computation

Michael Backes1, Jörn Müller-Quade2, and Dominique Unruh1

1 Saarland University, Saarbrücken, Germany
{backes,unruh}@cs.uni-sb.de

2 Universität Karlsruhe, Germany
muellerq@ira.uka.de

Abstract. We investigate whether security of multiparty computation in
the information-theoretic setting implies their security under concurrent
composition. We show that security in the stand-alone model proven
using black-box simulators in the information-theoretic setting does not
imply security under concurrent composition, not even security under
2-bounded concurrent self-composition with an inefficient simulator and
fixed inputs. This in particular refutes recently made claims on the equiv-
alence of security in the stand-alone model and concurrent composition
for perfect and statistical security (STOC’06). Our result strongly relies
on the question whether every rewinding simulator can be transformed
into an equivalent, potentially inefficient non-rewinding (straight-line)
simulator. We answer this question in the negative by giving a protocol
that can be proven secure using a rewinding simulator, yet that is not
secure for any non-rewinding simulator.

1 Introduction

Multiparty computation allows a set of parties with private inputs to jointly
compute a given function on their inputs such that the function evaluation does
not reveal any information about the inputs of other parties except for what can
already be deduced from the result of the evaluation. These properties should hold
even in the presence of a malicious adversary which fully controls the network and
which may control some subset of the parties that then may arbitrarily deviate
from the protocol.

Defining the security of a multiparty computation via an ideal execution
with an incorruptible trusted party has proven a salient technique in the past.
More precisely, the trusted party receives the inputs of all parties, correctly
evaluates the considered function and hands back the result. In this work, we
consider multiparty computation in the information-theoretic setting, where the
adversary is computationally unbounded, and where consequently no underlying
complexity-theoretic assumptions are required.

Multiparty computation has been investigated for a variety of different se-
curity levels and execution scenarios. As far as security levels are concerned,
perfect security means that the result obtained in the real protocol run with



the real adversary is identical to the result obtained in an ideal protocol run
with the simulator; statistical security is defined analogously but allows the
real and ideal results to deviate from each other by a small amount. As far as
different execution scenarios are concerned in which the protocol is executed
in, we distinguish between security in the stand-alone model, security under
concurrent self-composition, and security under concurrent general composition.
The stand-alone model only considers a single execution of the protocol under
consideration, and no other protocol is run concurrently. While this constituted
the standard setting for analyzing distributed security protocols in the past,
a common understanding arose that protocols have to be secure even when
executed many times in parallel (concurrent self-composition), or even when run
in an arbitrary network, where many different protocols may run concurrently
(concurrent general composition).

A considerable amount of work has been dedicated to carrying over results
obtained in the stand-alone model into the more realistic concurrent setting. In
particular, it is highly desirable to analyze protocols in the stand-alone model
with its much simpler execution scenario and restricted adversary capabilities,
and to derive theorems that allow for subsequently carrying these analyses over
into the more sophisticated models of concurrent composition. Our main result
however constitutes a separation of these two notions, i.e., we show that stand-
alone security and security under concurrent composition do not coincide in
the information-theoretic setting, neither for perfect nor for statistical security,
and not even for fixed inputs and 2-bounded concurrent self-composition (i.e.,
only two executions of the same protocol are executed concurrently). We believe
that this helps to foster our understanding of the relationships of the respective
security notions, thereby refuting some recently made claims, see below.

1.1 Related Work

Defining the security of a protocol by comparing it with an ideal specification
has proven a salient technique in the past, see e.g. [7,8,2,16,3,17,18,4,1], since it
entails strong compositionality properties. In recent years, several results have
been obtained concerning the relation of concurrent composition of function
evaluations to other security notions. First, [14] showed that a protocol that
can be concurrently composed and used as a subprotocol of another protocol
(concurrent general composition) is already secure with respect to specialised-
simulator UC (a variant of the UC notion with another order of quantifiers). It was
left open, however, whether concurrent general composition was also necessary
for specialised-simulator UC. Then [15] showed that for a large class of functions
(those which can be used to transfer a bit), the possibility to compose a protocol
concurrently already implies the possibility to use that protocol as a subprotocol
in arbitrary contexts, i.e., concurrent self-composition and concurrent general
composition coincide for these functions. The relations left open by [14] were
proven by [10,11] who showed that concurrent general composition is equivalent
to specialised-simulator UC in the case of statistical and perfect security, and
strictly stronger in the case of computational security.



All these results relate concurrent composition only to stronger notions, e.g.,
variants of the UC notion. To get feasibility results, it is necessary to look for
relations to weaker security notions, e.g. variants of the stand-alone model. This
approach was taken by [12], who could show that stand-alone security with a
non-rewinding black-box simulator already implies concurrent self-composition
(and in the perfect case even concurrent general composition). Unfortunately, they
also showed that stand-alone security with a non-rewinding black-box simulator
is not sufficient for concurrent general composition in the case of statistical or
computational security. A similar approach had earlier successfully been pursued
in [5] in a different security model based on [16]. They showed that perfect
security with non-rewinding simulators allows for concurrent composition.

The central question left to solve consequently was how these results behave
in the presence of a rewinding simulator, which arguably constitutes a crucial
scenario in modern cryptography. It was thus investigated in [12] in which ways
the requirement that the simulator has to be non-rewinding can be weakened such
that the established implications remain valid. They gave theorems that every
rewinding black-box simulator can be replaced by an equivalent, computationally
unbounded non-rewinding simulator. A consequence of these theorems was that
stand-alone security with a rewinding black-box simulator is already sufficient
for concurrent self-composition in the statistical case and even for concurrent
general composition in the perfect case. Our results however refute these claims.

In [9], it was shown that the task of performing a coin toss given a shorter
coin toss as seed can be realised with respect to rewinding black-box simulators
but not with respect to specialised-simulator UC. This resembles our results (see
Section 5 for a discussion) but applies only to the hybrid model (i.e., with access
to some ideal functionality) while the results in [12] were formulated in the bare
model. Furthermore, in contrast to the examples given here, those in [9] do not
cover the case of perfect security or of deterministic ideal functions, and they did
not explicitly apply their examples to the problem of rewinding vs. non-rewinding
simulators.

1.2 Our Results

We first show that rewinding constitutes a necessary ingredient for proving certain
protocols secure:

Theorem 1 (Necessity of rewinding – informal). There exist protocols that
are secure in the information-theoretic stand-alone setting with a rewinding black-
box simulator, and yet are not secure in this setting with any non-rewinding
black-box simulator.

This disproves the following claim from [12]: Any black-box simulator for
a perfect or statistically secure protocol can be transformed into a rewinding
black-box simulator.1 However, it still leaves open the question if stand-alone
security for protocols with rewinding black-box simulators implies security under
1 The wording has been adapted to our notation.



at least concurrent self-composition (it only invalidates the existing proof chain).
However, also this implication turns out not to hold, already if only two instances
of the same protocol are run concurrently and if only fixed inputs are considered:

Theorem 2 (Separating stand-alone model and concurrent (self-)com-
position – informal). There exist protocols that are secure in the stand-alone
model with a rewinding black-box simulator, and yet are not secure under 2-
bounded concurrent self-composition, not even with an inefficient simulator and
fixed inputs. This holds for both the perfect and the statistical case.

This refutes the following claim from [12]: Every protocol that is per-
fectly/statistically secure in the stand-alone model, and has a black-box simulator,
is secure under concurrent self-composition with fixed inputs, with an inefficient
simulator.

The counterexample for proving this theorem exploits a specific protocol
realization for a specific function. Thus one might still ask if there are other
protocols that can securely implement the considered function while at the same
time providing security under concurrent composition. If this was the case, the
impact of Theorem 2 would be considerably weakened as one might identify the
good protocol realizations for the troublesome function under consideration and
then still achieve strong compositionality guarantees using those realizations.

However, we show that this is not the case in general, at least not for proba-
bilistic functionalities, statistical security, and concurrent general composition:
The task of extending coin toss (i.e., obtaining k + 1 random coins from an ideal
functionality which gives only k random bits) can be securely implemented with
statistical security in the stand-alone model. However, there provably does not
exist any protocol for coin toss extension with respect to statistical concurrent
general composition.

Theorem 3 (A stronger separation – informal). There exists a probabilistic
function that can be securely implemented using a single instance of a probabilis-
tic function in the stand-alone model with statistical security and an efficient
rewinding black-box simulator, but that cannot be securely implemented by any
protocol with a polynomial number of rounds with respect to statistical concurrent
general composition.

2 Notation and Definitions

The stand-alone model. In the stand-alone model, a protocol π securely im-
plements an ideal function f if for every set of corrupted parties C and for
every adversary A there is a simulator S such that the families of random
variables REALπ,A,x(k) and IDEALf,S,x(k) are indistinguishable in the security
parameter k for all inputs x = (x1, . . . , xn). Here REALπ,A,x is the output of
the adversary and of the uncorrupted parties in the following interaction: The
uncorrupted parties i /∈ C get input xi. Then the parties interact as prescribed



by the protocol π. The adversary controls the corrupted parties, i.e., he can send
messages in the name of a party i ∈ C and receives all messages for parties i ∈ C.
Similarly, REALf,S,x consists of the output of the simulator S and of the results
of the function f . Here the inputs of f corresponding to the uncorrupted parties
are chosen according to x, and the inputs of the corrupted parties are entered by
the simulator. The simulator can choose his output in dependence of the output
of the function.2

In this paper, we distinguish two main flavors of the stand-alone model:
perfect and statistical security. In the case of perfect security, REALπ,A,x(k) and
IDEALf,S,x(k) have to be identically distributed, while in the case of statistical
security they must be statistically indistinguishable. Both cases do not impose
any limitations on the adversary and the simulator. For completeness, we also
mention computational security which requires the simulator and the adversary
to be polynomially bounded and the two families of random variables to be
computationally indistinguishable. (Sometimes, one also requires the simulator to
be efficient in the case of statistical and perfect security. We address this case by
explicitly stating whether the simulator is efficient or inefficient in the respective
theorems.) A more detailed exposition of the stand-alone model can be found in
[6, Chapter 7].
Concurrent self-composition. The stand-alone model does not a-priori guar-
antee that two or more concurrent executions of the same protocol are secure,
even if a single instance is secure. Therefore one is interested in the notion
of concurrent self-composition, which roughly says that several instances of a
given protocol securely implement the same number of instances of the ideal
function. In more detail, a protocol π securely implements a function f with
respect to g-bounded concurrent self-composition if g instances of π (considered
as a single protocol) securely implement g instances of the ideal function f in
the stand-alone model. Here we distinguish two cases: either the inputs to the
different instances of the protocol are all fixed in advance (i.e., each party i
receives a vector xi = (xi,1, . . . , xi,g) of inputs and uses xi,j as input for the j-th
instance), or the inputs to some instances can be chosen adaptively in dependence
of messages sent in other instances. For us, only the first case is relevant, which is
called concurrent self-composition with fixed inputs. More details on this definition
can be found in [13]. The case of adaptive inputs is discussed in [15].

The special case, that g-bounded concurrent self-composition is given for any
polynomial g we call polynomially-bounded concurrent self-composition or simply
concurrent self-composition.
Concurrent general composition The notion of concurrent general compo-
sition further extends the notion of concurrent self-composition. A protocol π
securely implements an ideal function f with respect to g-bounded concurrent
general composition if for any protocol σ that uses g copies of π as subprotocols,
σ securely implements σf in the stand-alone model (where σf denotes σ with all

2 In case the function gives different output to different parties (i.e., are asymmetric),
the situation gets slightly more complicated. However, all functions given in this
paper are symmetric, so the issue does not arise.



instances of π replaced by ideal evaluations of the function f). More details on
this notion are found in [14].
Black-box simulators. A natural restriction on the simulators is to require
black-box simulators, i.e., the simulator is not chosen in dependence of the
adversary, but instead we require that there is an oracle Turing machine S (the
black-box simulator) such that for every adversary A we have indistinguishability
of REALπ,A,x(k) and IDEALf,SA,x(k) where SA is S with black-box access to A.
A fine point in this definition is whether the simulator may rewind the adversary,
i.e., whether the simulator may at some point in time make a snapshot of the
state of the adversary and then return the adversary to that state. Normally,
one permits this operation and speaks of rewinding black-box simulators. On the
other hand, we may also require the simulator to be non-rewinding, so that it
can perform only one execution of the black-box adversary. This is often also
called a straight-line simulator.

3 The Necessity of Rewinding

We show that for certain functions and corresponding protocols, the ability to
rewind a black-box simulator is a crucial and unavoidable ingredient for achieving
simulation-based security proofs in secure multi-party computation. Throughout
this section, we consider the multiplication function fmult receiving two inputs
from a simple domain.

Definition 4 (Function fmult). The function fmult takes an input a ∈ {0, 1}
from Alice and an input b ∈ {1, 2} from Bob and returns a · b.

The corresponding protocol πmult that is intended to securely implement
fmult is defined as follows.

Definition 5 (Protocol πmult). Alice and Bob get inputs a ∈ {0, 1} and b ∈
{1, 2}, respectively.
– Alice sends a to Bob. If a /∈ {0, 1}, Bob assumes a = 0.
– Bob sends c := a · b to Alice. If a = 0, but c 6= 0, Alice assumes c = 0. If

a = 1, but c /∈ {1, 2}, Alice assumes c = 1.
– Both parties output c.

We first show that πmult securely implements fmult if rewinding of the black-
box adversary is permitted. After that, we show that rewinding is also necessary,
i.e., πmult securely implements fmult if and only if rewinding is permitted.

Lemma 6 (πmult securely implements fmult). The protocol πmult securely
implements fmult with perfect security in the stand-alone model with an efficient
rewinding black-box simulator.

We start with a short overview of the proof for the sake of illustration and
subsequently delve into the details. First, consider the case that Bob is corrupted.
In this case, the simulator conducts a simulation of the real protocol by executing
the real adversary in the role of Bob and choosing Alices input as 1. Since in this



case the result of the function equals Bob’s input, the simulator learns his input b
as chosen by the adversary. Then the simulator enters this input b into the ideal
function fmult . From the result of the function fmult one can deduce Alice’s input
a (the result is 0 if and only if a is zero). Then the simulator rewinds and restarts
the adversary, this time choosing the true input a that Alice has input. Thus the
simulator learns the output out the adversary gives when the input of Alice is a.
Finally, the simulator outputs out . This constitutes a perfect simulation since
the simulator enters the same input b into the function fmult and produces the
same output out as the adversary does in the real model.

Now consider the case that Alice is corrupted. In this case simulation is
straightforward: Alice’s input a is sent in the clear as the first message of the
protocol (by the black-box adversary), so the simulator enters this input into the
ideal function fmult . The simulator finally has to simulate the message c = a · b
sent by Bob. This is straightforward since the simulator knows the correct value
of c from the output of fmult . Finally, the simulator gives the same output as the
simulated adversary, thus achieving a perfect simulation.

We now transform these intuitions into a rigorous proof.

Proof. In the case that no party is corrupted, the security (correctness) of the
protocol is obvious.

Now first consider the case that Bob is corrupted. The simulator S for this
case proceeds as follows:

– First fix the random tape of the adversary A, which is given as a black-box.
– Then send the message â = 1 to the adversary.
– Let ĉ be the reply of the adversary. If ĉ /∈ {1, 2}, set ĉ := 1 instead (as Alice

would have done herself).
– Set b := ĉ and use b as Bob’s input to the function fmult .
– Let res be the result of the function fmult . Let ã := 0 if res = 0 and ã := 1

otherwise.
– Rewind the adversary (but use the same random tape) and send the message

ã to the adversary.
– When the adversary outputs out , output out .

Let now an adversary A be given. Without loss of generality, assume A to be
deterministic (this is indeed no restriction since the random tape for which the
simulator is least successful can be hardwired into A). Then the following values
are defined:

– The message ĉa sent by the adversary when receiving a message a ∈ {0, 1}.
– The output ôuta of the adversary when he receives a message a ∈ {0, 1}.

Without loss of generality again, assume ĉ0 = 0 and ĉ1 ∈ {1, 2} (since Alice and
the simulator replace other values by valid ones).

Given the values of ĉa and outa, and the input a, we can calculate the different
values that occur during the run of the ideal protocol, in particular the values
IDEALfmult ,SA,a(k) = (res, out). We summarise these values in the left table of
Figure (1). Furthermore, we can also calculate the different values that occur



during a real protocol run, i.e., c being the message sent by A to Alice, and
REALπmult ,A,a(k) = (res, out) the result of the function and the output of the
real adversary. These values are summarized in the right table of Figure (1).

Ideal protocol: Real protocol:

a ĉ res ã out

0 ĉ1 0 0 out0
1 ĉ1 ĉ1 1 out1

a c res out

0 0 0 out0
1 ĉ1 ĉ1 out1

Fig. 1. Values occuring in the run of the ideal protocol (left side) and the real
protocol (right side).

Since both out and res have the same values in real and ideal model (for all
values of a), perfect security in the case that Bob is corrupted follows.

Now we consider the case that Alice is corrupted. In this case, the following
simple simulator S achieves a perfect simulation:

– Query A for the first message a.
– If a /∈ {0, 1}, set a := 0.
– Then a is passed to the function fmult as Alice’s input.
– The result c := res = a · b is given to the adversary as the answering message

from Bob.
– Finally, output the simulated black-box adversary’s output.

It is again straightforward to check that this constitutes a perfect simulation in
the case of a corrupted Alice. ut

The next lemma shows that considering only non-rewinding simulators is not
sufficient to prove that πmult securely implements fmult .

Lemma 7 (πmult needs rewinding). The protocol πmult does not securely
implement fmult in the stand-alone model with respect to perfect, statistical, or
computational security, with any non-rewinding black-box simulator (not even
with inefficient ones).

We again start with a proof sketch. We consider the case that Bob is corrupted.
To give the correct input to the ideal function fmult , the simulator needs to
interact with the black-box adversary before invoking fmult . Furthermore, to get
the correct value of Bob’s input, the simulator has to choose Alice’s input to be
a = 1 in the interaction with the black-box adversary (this is exactly how the
simulator in Lemma 6 was constructed). In addition to causing the result of the
function to be correct, the simulator also needs to output what the black-box
adversary would output in the same situation. The simulator already executed
the adversary with a = 1; consequently if the true input turns out to be 0, the
simulator cannot learn what the adversary would output in that situation unless
he rewinds the adversary and executes it with Alice’s input a set to 0. However,
we assumed that rewinding is not permitted, and hence the simulation fails.



Proof. For contradiction, we assume that there is a non-rewinding black-box
simulator S such that for all adversariesA corrupting Bob and all inputs a ∈ {0, 1}
from Alice, we have

REALπmult ,A,a(k) ≈ IDEALfmult ,SA,a(k). (1)

For brevity, we write S instead of SA.
Furthermore, we construct a family of adversaries A = A(b, o) with b ∈ {1, 2}

and o ∈ {0, 1}. The adversary A corrupts Bob and behaves as follows: When
receiving a message a from Alice, he sends c := a · b to Alice. Finally, he outputs
o if a = 0 and ⊥ otherwise.

To describe the real model, we use the following notation: Let a denote the
input of Alice. Since we only consider the case that Bob is corrupted, a is also
the message from Alice to Bob in the real model. Let c denote Bob’s answer.
Since Alice is uncorrupted, the result of the function evaluation in the real model
is also c. When using the adversary A given above, it is c = a · b. Finally let out
denote A’s output.

To prevent confusion, we add a swung dash (∼) to the random variables in
the ideal model. That is, c̃ is the result of the function fmult , and b̃ is the input
given by S in Bob’s stead to the function fmult . Further, let ã be the first message
given by S to the black-box A (which corresponds to the message sent by Alice
in the real protocol). Finally, let õut denote the output of the simulator S. The
input of the uncorrupted Alice is still called a, since it is the same in real and
ideal model (a, b and o are not random variables).

The simulator S has two possibilities: Either he queries the function fmult

(with some input b̃) before giving the message ã to the black-box adversary A
(we call this event F ), or he first sends the message ã to A.

Assume that event F occurs with non-negligible probability P (F ). In that
case, b̃ is chosen independently of b, so there exists a b, s.t. the probability that
b 6= b̃ is at least 1

2P (F ). Then, in the case a = 1 the probability that a·b 6= a· b̃ = c̃
is also at least 1

2P (F ). In the real model however, we have c = a · b. Since c and
c̃ denote the result of the function fmult in the real and ideal model, this is a
contradiction to Equation (1).

So event F happens only with negligible probability. Therefore, we can assume
without loss of generality that the simulator S always first sends ã to the adversary,
and only then inputs b̃ into fmult . Assume now that the probability P (ã = 0) is
non-negligible. Then consider the case a = 1. For ã = 0 the adversary A answers
with ã · b = 0, which is independent of b. In that case, b̃ is chosen by the simulator
independently of b. Therefore, P (b̃ 6= b) ≥ 1

2P (ã = 0) for some choice of b. Since
c̃ = a · b̃, P (c̃ 6= a · b) is non-negligible. But in the real model we have c = a · b, in
contradiction to Equation (1). Therefore P (ã = 0) is negligible, so we can assume
without loss of generality that the simulator always sends ã = 1 to A (before
invoking fmult).

By construction, when receiving ã = 1, the adversary will give output ⊥.
Therefore, the simulator’s output õut is independent of o, so for some o we have
P (out 6= o) ≥ 1

2 . But in the case a = 0, the adversary outputs out = o in the



real model. This contradicts (1). So there cannot exist a non-rewinding simulator
that fulfills Equation (1). ut

The general statement induced by the previous results is summarized in the
following corollary. Its proof is a direct consequence of Lemma 6 and 7.

Theorem 8. Let f be a function and π a protocol that securely implements
f with perfect, statistical, or computational security in the stand-alone model.
Then π does not necessarily securely implement f with perfect, statistical, or
computational security, respectively, with any non-rewinding black-box simulator.

In the proofs we have assumed the following variant of the stand-alone model:
After running the protocol, the output of the adversary should be indistinguishable
in the real and the ideal model. Another popular variant of the model instead
considers the view of the adversary. Our examples can be easily transferred to the
latter setting. Instead of giving some output out , the adversary sends a protocol
message containing out that is ignored by the protocol. Then our proofs directly
carry over to that variant of the stand-alone model. This also applies to the
proofs in the next section.

The example given in this section could also be used to show that stand-alone
security does not imply concurrent self-composition: When two instances of πmult

run concurrently, a corrupted Bob can enforce the sum of the outputs to equal
2 (unless Alice inputs 0 in both cases), which is impossible given access to two
copies of fmult . However, instead of showing this in detail, we will show the
separation between stand-alone security and concurrent self-composition in the
next section using another example which we consider to be more instructive.

4 Perfect Stand-Alone Security does not imply
Concurrent Self-Composition

In this section, we show that for certain functions and corresponding protocols,
security in the stand-alone model is not necessarily sufficient for guaranteeing
security under concurrent self-composition. Throughout this section, we consider
the functions fminx

, where x is a natural number that constitutes a parameter of
the function. The function fminx

outputs the minimum of its inputs.

Definition 9 (Function fminx
). Let x ≥ 2 be an integer. The function fminx

takes two inputs a, b ∈ {1, . . . , x} from Alice and Bob, where a is odd and b is
even. The result fminx

(a, b) is the minimum of a and b.

Definition 10 (Protocol πminx
). Let x ≥ 2 be an integer. Alice gets an odd

input a ∈ {1, . . . , x}, Bob an even input b ∈ {1, . . . , x}.
– The protocol πminx proceeds in at most x− 2 rounds 1, . . . , x− 2.
– In round r for an odd value r, Alice sends no if r 6= a, and yes if r = a.
– In round r for an even value r, Bob sends no if r 6= b, and yes if r = b.
– If any other message is sent, the message is assumed by the recipient to be

no.



– As soon as a message yes has been sent (in some round r), the protocol
terminates, and both parties output r.

– If no message yes is sent in any round, the output is x− 1.

Lemma 11 (πminx securely implements fminx). Let x ≥ 2 be an integer. The
protocol πminx

securely implements fminx
with perfect security in the stand-alone

model and with an efficient rewinding black-box simulator.

The proof can be sketched as follows; for the sake of readability, we only elaborate
on the case that Bob was corrupted. The simulator starts a simulation of a real
protocol where the (black-box) real adversary plays the role of Bob and Alice’s
input is set to its largest possible value amax . Then the minimum of Alice’s and
Bob’s input, which is returned by the ideal function fminx , allows us to calculate
Bob’s input b. This value b is then used as Bob’s input in the ideal evaluation
of fminx

. So far, we have already guaranteed that the result of the function is
identical in both the real and the ideal model. The simulator now has to learn
what the adversary would output. Learning this output requires the simulator to
perform a second simulation of the real protocol with the adversary using the
correct value of Alice’s input a (here we need the possibility to rewind). In the
case that the result of the function is smaller than Bob’s input b, this is an easy
task since the input of Alice is equal to the result of the function. If the function
result is however equal to the input of Bob, we can only deduce that Alice’s input
is larger than Bob’s input. In this case, the simulator simply assumes the largest
possible value amax that Alice might have input. Since the protocol terminates in
the round corresponding to Bob’s input b, the adversary will never learn whether
Alice used her maximum input or just some input greater than b. So in both
cases, the simulator learns what output the adversary gives in the real model,
and it can thus perform a perfect simulation.

Proof. Let a and b denote the inputs of Alice and Bob, respectively. Let amax be
the largest odd integer with amax ≤ x (Alice’s largest possible input), and bmax

the largest even integer with bmax ≤ x (Bob’s largest possible input).
If Alice and Bob are uncorrupted, it is easy to check, that the protocol indeed

calculates the minimum of a and b. Hence correctness (security) in this case is
clear.

Now consider the case that Bob is corrupted. In this case, the following
simulator S achieves a perfect simulation:

– First fix the random tape of the adversary A, which is given as a black-box.
– Simulate a protocol run of πminx

with A where Bob is corrupted and Alice
gets input amax . Let r̃es be Alice’s output in this function evaluation.

– Let b̃ := r̃es if r̃es < amax , and b̃ := bmax otherwise.
– Invoke the ideal function πminx

using b̃ as Bob’s input. Let res be the result
of the function.

– Let ã := res if res < b̃, and let ã := amax otherwise.
– Then simulate a protocol run of πminx

with adversary A where Bob is
corrupted and Alice gets input ã. Let out be the adversary’s output in that
protocol run.



– Output out .

Now, consider an adversary A that corrupts Bob. Without loss of generality,
assume A to be deterministic (cf. the proof of Lemma 6). Assume further that
A only sends messages yes and no, and that these messages only occur in the
appropriate (i.e., even) rounds.

Then we can associate the following values with this adversary A:

– By b̂ we denote the number of the first round in which the adversary answers
with yes when Alice always sends no. If A never sends yes, let b̂ := bmax .
(Intuitively, b̂ denotes Bob’s input as chosen by the adversary.)

– By outa we denote the output made by the adversary in the execution of a
real protocol when Alice has input a.

Note that both b̂ and outa are obtained deterministically since both A and the
protocol πminx

are deterministic. The following facts are easy to observe:

(i) In a protocol run of πminx
with A where Alice gets input a, Alice’s output

(i.e., the result of the function) is always min(a, b̂). (This holds since in
case b̂ < a, the adversary cannot distinguish Alice from an Alice with input
amax , and if b̂ > a, the protocol guarantees that a is output. The case b̂ = a
does not occur, since b̂ is even and a is odd.)

(ii) For a, a′ > b̂ it is outa = outa′ . (Because then the protocol terminates in
round b̂, so Alice behaves identically with inputs a and a′.)

We now show, that S entails a perfect simulation in the case that Bob is
corrupted. Consider an ideal protocol run consisting of the simulator S (having
black-box access to the adversary A), and the ideal function fminx

receiving some
input a on Alice’s side.

First, the simulator simulates a real protocol run with input amax for Alice.
By fact (i), Alice’s output in that protocol run is min(amax , b̂). Therefore it is
r̃es = min(amax , b̂).

If min(amax , b̂) = r̃es < amax , it follows r̃es = b̂. If min(amax , b̂) = r̃es ≥ amax ,
if follows b̂ ≥ amax , and therefore b̂ = bmax . In both cases the value b̃ calculated
by the simulator equals b̂.

Since the simulator enters b̃ as Bob’s input into the function fminx , the result
of the function is res = min(a, b̃) = min(a, b̂).

Consider the case min(a, b̃) = res < b̃. Then a = res and the simulator sets
ã := res, so outa = out ã. In the case min(a, b̃) = res ≥ b̃, it is a > b̃ (since a
and b̃ cannot be equal, being of different parity). The simulator then chooses
ã := amax ≥ a > b̃, so a, ã > b. By fact (ii), we then have outa = out ã. So in
both cases, the output of the simulator and the output of the adversary coincide,
i.e., we have out = outa.

In a nutshell, the result of the function (i.e., Alice’s output) in an ideal
protocol run is res = min(a, b̂), and the output of the simulator is out = outa.

In the real model the result of the function is min(a, b̂) according to Fact (i).
Moreover, the output of the adversary is outa by definition.



Consequently, the output of the adversary and and the result of the function
evaluation are identical in real and ideal model so that perfect security in the
case that Bob is corrupted follows.

The case that Alice is corrupted is proven identically, except for exchanging
the roles of Alice and Bob, the letters a and b and the words odd and even. ut

Lemma 12 (πminx
does not compose concurrently). Let x ≥ 4 be an inte-

ger. The protocol πminx does not securely implement fminx with perfect, statistical,
or computational 2-bounded concurrent self-composition with fixed inputs.

This even holds if we allow unbounded non-black-box simulators that may
adaptively query the two ideal instances of fminx .

The basic idea underlying the proof of the lemma can be given as follows.
A corrupted Bob will start two parallel sessions of the real protocol πminx with
Alice and subsequently forward all protocol messages from one protocol session
into the other and vice versa. The output of both protocols will then be equal to
the smaller input that Alice has made (±1). This is impossible to achieve when
concurrently interacting with two ideal functions: The simulator has to invoke
one of the functions first. If it uses a large value for Bob’s input, the simulation
will fail if Alice gave a large input to that first function, and a small input to the
second one. If it uses a small value for Bob’s input, it will fail if Alice gave large
inputs to both functions.

Actually, the proof gives a slightly stronger result than Lemma 12 since it
shows that πminx

does not even allow for parallel composition.

Proof. We construct an adversary A corrupting Bob and attacking two concur-
rently composed instances of πminx as follows:

– In each odd round, he receives messages mA,1,mA,2 from the two instances
A1, A2 of Alice.

– In each even round, he sends mA,1 to the second instance A2 of Alice, and
mA,2 to the first instance A1.

Let a1 denote the input of the first instance of Alice, and a2 the input of the
second instance of Alice. Let further res1 and res2 denote the respective outputs.

Then if a1 < a2, one easily sees that res1 = a1 and res2 = a1 + 1 (since the
forwarded yes-message reaches A2 only in the (a1 + 1)-st round). Similarly, if
a1 > a2, it is res1 = a2 + 1 and res2 = a2. Finally, if a1 = a2 < amax , we get
res1 = res2 = a1 = a2, and if a1 = a2 = amax we finally have res1 = res2 = x−1.

Now, consider an arbitrary simulator S. This simulator has access to two
instances f1

minx
, f2

minx
of the function fminx

, which receive inputs a1 and a2 from
Alice, respectively. The simulator may now invoke the functions one after the
other. Let f i

minx
denote the function invoked first (i.e., i is a random variable),

and bi the Bob-input given to f i
minx

by S. Since both i and bi cannot depend on
the inputs a1 and a2 from Alice, at least one of the following two cases occurs with
probability at least 1

4 for suitable choices of a1 and a2: (i) It is a1 = a2 = amax

and bi < x− 1. (ii) It is ai = amax , a3−i = 1 and bi ≥ x− 1.



In case (i) the result of f i
minx

will be bi < x− 1. However, as we have shown
above, in the real model, with inputs a1 = a2 = amax the result of f1

minx
and

f2
minx

(i.e., the outputs of the Alice-instances) would be x − 1. Therefore the
results differ in real and ideal model.

In case (ii) the result of f i
minx

will be greater or equal x−1 (since amax ≥ x−1).
In the real model however, the results of the functions would be 1 and 2 (in some
order), because a3−i = 1. Since x ≥ 4, both results are smaller than x− 1 and so
the results differ in real and ideal model.

So with non-negligible probability, the function results in the ideal model do
not match those in the real model. The insecurity of πminx

under 2-bounded
concurrent self-composition follows. ut

These lemmas yield the following theorem. Its proof is a direct consequence
of Lemma 11 and 12.

Theorem 13. Let f be a function and π a protocol that securely implements f
with perfect, statistical, or computational security in the stand-alone model with
an efficient rewinding black-box simulator. Then π does not necessarily securely
implement f with perfect, statistical, or computational security under 2-bounded
concurrent self-composition, not even with an inefficient non-black-box simulator
and fixed inputs.

5 A Stronger Separation

The results proven so far show that certain protocols can be secure in the stand-
alone model, require rewinding, and do not allow composition. The natural
question arising here is whether this issue of composition depends on a specific
choice of the protocol while some other protocol for the same task might be
composable. We show that, at least for the case of a probabilistic functionality,
statistical security, and concurrent general composition, this is not the case: The
task of extending coin toss (i.e., obtaining k + 1 random coins from an ideal
funtionality which gives only k random bits) can be realised with statistical
security in the stand-alone model. However, there does not exist a protocol for
coin toss extension with respect to statistical concurrent general composition.

Corollary 14. There exists a probabilistic function F that can be securely im-
plemented using a single instance of a probabilistic function G in the stand-alone
model with statistical security and an efficient rewinding black-box simulator, but
that cannot be securely implemented using a single instance of G by any protocol
with a polynomial number of rounds with respect to statistical concurrent general
composition.

Proof. Let F be the (k +1)-bit coin-toss functionality (i.e., the functionality that
provides one uniformly chosen string of length k + 1, cf. [9]). F is a function that
ignores its inputs. Let G be the k-bit coin-toss functionality.



In [9] it is shown, that there is a protocol securely implementing F using
G in the stand-alone model with statistical security (and an efficient rewinding
black-box simulator).

Assume that there is a polynomial-round protocol π securely implementing
F using a single instance of G with respect to statistical concurrent general
composition. Then by the results in [14], π also securely implements F with
respect to statistical specialised-simulator UC ([14] only shows the computational
case, but the proof easily carries over to the statistical case). But in [9] it is
shown that no polynomial-round protocol π using a single instance of G exists
that securely implements F with respect to specialised-simulator UC (actually,
[9] state the theorem for UC, but their proof also shows the case of specialised-
simulator UC, since the environments constructed in their proof do not depend
on the simulator). Thus we have a contradiction and the lemma follows. ut

6 Conclusion and Open Questions

We have shown that in the information-theoretic setting, the existence of a
rewinding simulator in the stand-alone model is not sufficient for the existence
of a non-rewinding simulator, nor for achieving concurrent composition. In that
light, the question naturally arises which additional constraints may be imposed
on the black-box simulator so that it can be converted into a non-rewinding
black-box simulator (which then in turn allows for concurrent composition, see
[12]). A major problem in coming up with a constructive transformation of a
rewinding simulator into a non-rewinding one seems to be the following: The
original simulator’s program may explicitly require several executions of the
black-box adversary, e.g., the knowledge-extractor in most proofs of knowledge
executes the adversary (i.e., the prover) twice or more often, and then uses
the results of several of the executions to construct the required output. Such
a knowledge-extractor cannot easily be transformed into a non-rewinding one,
since then its program would suddenly find itself in the unexpected situation of
terminating without having run the black-box adversary twice, yielding undefined
results. The simulators in the counterexamples given in this work are of this
form as well. On the other hand, many simulators found in the literature use
rewinding only to backtrack from wrong choices. After having backtracked, they
forget that they rewound the adversary and start anew, hoping to select the
right choice this time. Protocol with simulators of this kind include, e.g., the
well-known zero-knowledge proofs of graph-isomorphism and graph-3-colouring.

More formally we call a simulator obliviously rewinding, if it is an oracle
Turing machine with the following extension: at any point during its execution,
the simulator may set a marker M . Then a snapshot of the state of the simulator
and of the black-box adversary is taken. Furthermore, the simulator may then at
any other point of its execution choose to return to a marker M . If he chooses to
do so, the state of the black-box adversary and of the simulator itself are restored
to the snapshot that was taken when the marker M was set. The program of an
obliviously rewinding simulator does not run into an undefined situation when the



simulation suddenly goes through without any rewinding. Therefore, it may be
possible that such an obliviously rewinding simulator can indeed be transformed
into a non-rewinding one as proposed in [12]. We leave this as an open question.

Acknowledgements. We thank the anonymous referees for helpful comments.

References

1. M. Backes, B. Pfitzmann, and M. Waidner. Secure asynchronous reactive systems.
IACR Cryptology ePrint Archive 2004/082, Mar. 2004.

2. D. Beaver. Secure multiparty protocols and zero knowledge proof systems tolerating
a faulty minority. Journal of Cryptology, 4(2):75–122, 1991.

3. R. Canetti. Security and composition of multiparty cryptographic protocols. Journal
of Cryptology, 3(1):143–202, 2000.

4. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proc. 42nd IEEE Symposium on Foundations of Computer Science
(FOCS), pages 136–145, 2001. Extended version in Cryptology ePrint Archive,
Report 2000/67, http://eprint.iacr.org/.

5. Y. Dodis and S. Micali. Parallel reducibility for information-theoretically secure
computation. In M. Bellare, editor, Advances in Cryptology, Proceedings of CRYPTO
’00, volume 1880 of Lecture Notes in Computer Science, pages 74–92. Springer-Verlag,
2000.

6. O. Goldreich. Foundations of Cryptography – Volume 2 (Basic Applications).
Cambridge University Press, May 2004. Previous version online available at http:
//www.wisdom.weizmann.ac.il/~oded/frag.html.

7. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game – or – a
completeness theorem for protocols with honest majority. In Proc. 19th Annual
ACM Symposium on Theory of Computing (STOC), pages 218–229, 1987.

8. S. Goldwasser and L. Levin. Fair computation of general functions in presence of
immoral majority. In Advances in Cryptology: CRYPTO ’90, volume 537 of Lecture
Notes in Computer Science, pages 77–93. Springer, 1990.

9. D. Hofheinz, J. Müller-Quade, and D. Unruh. On the (im)possibility of ex-
tending coin toss. In S. Vaudenay, editor, Advances in Cryptology, Proceed-
ings of EUROCRYPT ’06, volume 4004 of Lecture Notes in Computer Sci-
ence, pages 504–521. Springer-Verlag, 2006. Full version online available at
http://eprint.iacr.org/2006/177.

10. D. Hofheinz and D. Unruh. Comparing two notions of simulatability. In J. Kilian,
editor, Theory of Cryptography, Proceedings of TCC 2005, Lecture Notes in Com-
puter Science, pages 86–103. Springer-Verlag, 2005. Online available at http://

iaks-www.ira.uka.de/home/unruh/publications/hofheinz05comparing.html.
11. D. Hofheinz and D. Unruh. Simulatable security and polynomially bounded con-

current composition. In IEEE Symposium on Security and Privacy, Proceedings of
SSP ’06, pages 169–182. IEEE Computer Society, 2006. Full version online available
at http://eprint.iacr.org/2006/130.ps.

12. E. Kushilevitz, Y. Lindell, and T. Rabin. Information-theoretically secure
protocols and security under composition. In 38th Annual ACM Symposium
on Theory of Computing, Proceedings of STOC 2006, pages 109–118. ACM
Press, 2006. Online available at http://www.cs.biu.ac.il/~lindell/abstracts/
IT-composition_abs.html.

http://eprint.iacr.org/
http://www.wisdom.weizmann.ac.il/~oded/frag.html
http://eprint.iacr.org/2006/177
http://iaks-www.ira.uka.de/home/unruh/publications/hofheinz05comparing.html
http://eprint.iacr.org/2006/130.ps
http://www.cs.biu.ac.il/~lindell/abstracts/IT-composition_abs.html


13. Y. Lindell. Bounded-concurrent secure two-party computation without setup
assumptions. In 35th Annual ACM Symposium on Theory of Computing, Proceedings
of STOC 2003, pages 683–692. ACM Press, 2003.

14. Y. Lindell. General composition and universal composability in secure multi-party
computation. In 44th Annual Symposium on Foundations of Computer Science,
Proceedings of FOCS 2003, pages 394–403. IEEE Computer Society, 2003. Online
available at http://eprint.iacr.org/2003/141.

15. Y. Lindell. Lower bounds for concurrent self composition. In M. Naor, editor,
Theory of Cryptography, Proceedings of TCC 2004, volume 2951 of Lecture Notes
in Computer Science, pages 203–222. Springer-Verlag, 2004.

16. S. Micali and P. Rogaway. Secure computation. In Advances in Cryptology: CRYPTO
’91, volume 576 of Lecture Notes in Computer Science, pages 392–404. Springer,
1991.

17. B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure
reactive systems. In Proc. 7th ACM Conference on Computer and Communications
Security, pages 245–254, 2000. Extended version (with Matthias Schunter) IBM Re-
search Report RZ 3206, May 2000, http://www.semper.org/sirene/publ/PfSW1_
00ReactSimulIBM.ps.gz.

18. B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and
its application to secure message transmission. In Proc. 22nd IEEE Symposium
on Security & Privacy, pages 184–200, 2001. Extended version of the model (with
Michael Backes) IACR Cryptology ePrint Archive 2004/082, http://eprint.iacr.
org/.

http://eprint.iacr.org/2003/141
http://www.semper.org/sirene/publ/PfSW1_00ReactSimulIBM.ps.gz
http://eprint.iacr.org/

	Introduction
	Related Work
	Our Results

	Notation and Definitions
	The Necessity of Rewinding
	Perfect Stand-Alone Security does not imply Concurrent Self-Composition
	A Stronger Separation
	Conclusion and Open Questions

