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Abstract. An obfuscator is a compiler that transforms any program
(which we will view in this work as a boolean circuit) into an obfuscated
program (also a circuit) that has the same input-output functionality as
the original program, but is “unintelligible”. Obfuscation has applica-
tions for cryptography and for software protection.
Barak et al. initiated a theoretical study of obfuscation, which focused on
black-box obfuscation, where the obfuscated circuit should leak no infor-
mation except for its (black-box) input-output functionality. A family of
functionalities that cannot be obfuscated was demonstrated. Subsequent
research has showed further negative results as well as positive results
for obfuscating very specific families of circuits, all with respect to black
box obfuscation.
This work is a study of a new notion of obfuscation, which we call best-
possible obfuscation. Best possible obfuscation makes the relaxed require-
ment that the obfuscated program leaks as little information as any other
program with the same functionality (and of similar size). In particular,
this definition allows the program to leak non black-box information.
Best-possible obfuscation guarantees that any information that is not
hidden by the obfuscated program is also not hidden by any other similar-
size program computing the same functionality, and thus the obfuscation
is (literally) the best possible. In this work we study best-possible obfus-
cation and its relationship to previously studied definitions. Our main
results are:

1. A separation between black-box and best-possible obfuscation. We
show a natural obfuscation task that can be achieved under the
best-possible definition, but cannot be achieved under the black-box
definition.

2. A hardness result for best-possible obfuscation, showing that strong
(information-theoretic) best-possible obfuscation implies a collapse
in the polynomial hierarchy.

3. An impossibility result for efficient best-possible (and black-box) ob-
fuscation in the presence of random oracles. This impossibility result
uses a random oracle to construct hard-to-obfuscate circuits, and
thus it does not imply impossibility in the standard model.
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1 Introduction

An open question in computer security is whether computer programs can be
obfuscated; whether code can be made unintelligible while preserving its function-
ality. This question is important as obfuscation has wide-ranging applications,
both for software protection and for cryptography. Beyond its theoretical impor-
tance, the question of obfuscation is of great practical importance. Numerous
ad-hoc heuristical techniques are used every day by practitioners to obfuscate
their code, even though many of these techniques do not supply any provable
notion of security.

A theoretical study of obfuscation was initiated by Barak, Goldreich, Im-
pagliazzo, Rudich, Sahai, Vadhan and Yang [2]. They studied several notions of
obfuscation, primarily focusing on black-box obfuscation, in which an obfuscator
is viewed as a compiler that, given any input program or circuit, outputs a pro-
gram with the same functionality from which it is hard to find any deterministic
information on the input program. Formally, black-box obfuscation requires that
anything that can be efficiently computed from the obfuscated program, can also
be computed efficiently from black-box (i.e. input-output) access to the program.
Their main result was that this (strong) notion of obfuscation cannot always be
achieved, as they were able to present an explicit family of circuits that provably
cannot be black-box obfuscated.

Barak et al. [2] considered also an alternative notion of obfuscation called
indistinguishability obfuscation that sidesteps the black-box paradigm. An in-
distinguishability obfuscator guarantees that if two circuits compute the same
function, then their obfuscations are indistinguishable in probabilistic polyno-
mial time. This definition avoids the black-box paradigm, and also avoids the
impossibility results shown for the black-box obfuscation notion. Indeed, Barak
et al. showed that it is simple to build inefficient indistinguishability obfusca-
tors. One main disadvantage of indistinguishability obfuscation is that it does not
give an intuitive guarantee that the circuit “hides information”. This is apparent
in their proposed construction of an inefficient indistinguishability obfuscator,
where a small circuit is revealed which is equivalent to the original circuit. For
some functionalities, this is a great deal of information to give away.

This Work. We propose a new notion of obfuscation, best-possible obfuscation,
that avoids the black-box paradigm, and also gives the appealing intuitive guar-
antee that the obfuscated circuit leaks less information than any other circuit
(of a similar size) computing the same function. This work is a study of this new
notion of best-possible obfuscation.

Instead of requiring that an obfuscator strip a program of any non black-
box information, we require only that the (best-possible) obfuscated program
leak as little information as possible. Namely, the obfuscated program should be
“as private as” any other program computing the same functionality (and of a
certain size). A best-possible obfuscator should transform any program so that
anything that can be computed given access to the obfuscated program should
also be computable from any other equivalent program (of some related size).



A best-possible obfuscation may leak non black-box information (e.g. the code
of a hard-to-learn function), as long as whatever it leaks is efficiently learnable
from any other similar-size circuit computing the same functionality.

While this relaxed notion of obfuscation gives no absolute guarantee about
what information is hidden in the obfuscated program, it does guarantee (liter-
ally) that the obfuscated code is the best possible. It is thus a meaningful notion
of obfuscation, especially when we consider that programs are obfuscated every
day in the real world without any provable security guarantee.

In this work we initiate a study of best-possible obfuscation. We explore its
possibilities and limitations, as well as its relationship with other definitions of
obfuscation that have been suggested. We formalize the best-possible require-
ment in Definition 5, by requiring that for every efficient learner who tries to
extract information from an obfuscated circuit, there exists an efficient simulator
that extracts similar information from any other circuit with the same function-
ality and of the same size. We consider both computationally best-possible obfus-
cation, where the outputs of the learner and simulator are indistinguishable with
respect to efficient distinguishers, and information theoretically best-possible ob-
fuscation (perfect or statistical), where even an unbounded distinguisher cannot
tell the difference between the two. We emphasize that statistically or perfectly
best-possible obfuscation refer to the distinguisher, whereas we only consider
information that can be learned efficiently given the obfuscated circuit. This
strengthens negative results. Our positive result on perfectly best-possible ob-
fuscation applies also to unbounded learners.

Relationship with Previous Definitions. We study how best-possible obfusca-
tion relates to black-box obfuscation, and present a separation between the two
notions of obfuscation. The proof of this result also gives the first known sep-
aration between black-box and indistinguishability obfuscation. The separation
result considers the complexity class of languages computable by polynomial
sized ordered decision diagrams or POBDDs; these are log-space programs that
can only read their input tape once, from left to right (see Section 3). We observe
that any POBDD can be best-possible obfuscated as a POBDD (Proposition 2),
whereas there are many natural functions computable by POBDDs that prov-
ably cannot be black-box obfuscated as any POBDD (Proposition 3). These two
results give new possibility results (for best-possible and indistinguishability ob-
fuscation), and simple natural impossibility results (for black-box obfuscation).
Note that the impossibility result for black-box obfuscation only applies when
we restrict the representation of the obfuscator’s output to be a POBDD itself.

We also compare the notions of best-possible and indistinguishability obfus-
cation. Proposition 4 shows that any best-possible obfuscator is also an indistin-
guishability obfuscator. For efficient obfuscators the definitions are equivalent
(Proposition 5). For inefficient obfuscation, the difference between the two de-
finitions is sharp, as inefficient information-theoretic indistinguishability obfus-
cators are easy to construct (see [2]), but the existence of inefficient statistically
best-possible obfuscators even for the class of languages recognizable by 3-CNF



circuits (a sub-class of AC0) implies that the polynomial hierarchy collapses to
its second level.

We believe that the equivalence of these two definitions for efficient obfusca-
tion motivates further research on both, as the “best-possible” definition gives a
strong intuitive security guarantee, and the indistinguishability definition may
sometimes be technically easier to work with.

Impossibility Results. We explore the limits of best-possible obfuscation. As
noted above, we begin by considering information-theoretically (statistically)
best-possible obfuscation. In Theorem 1 we show that if there exist (not neces-
sarily efficient) statistically secure best-possible obfuscators for the simple circuit
family of 3-CNF circuits (a sub-class of AC0), then the polynomial hierarchy col-
lapses to its second level. Corollary 1 of this theorem states that also if there
exists an efficient statistically secure indistinguishability obfuscator for the same
simple circuit family, then the polynomial hierarchy collapses to its second level.
This is the first impossibility result for indistinguishability obfuscation in the
standard model.

We also consider best-possible obfuscation in the (programmable) random
oracle model. In this model, circuits can be built using special random oracle
gates that compute a completely random function. Previously, this model was
considered by Lynn, Prabhakaran and Sahai [17] as a promising setting for pre-
senting positive results for obfuscation. We show that the random oracle can also
be used to prove strong negative results for obfuscation. In Theorem 2 we present
a simple family of circuits with access to the random oracle, that are provably
hard to best-possible obfuscate efficiently. This impossibility results extends to
the black-box and indistinguishability obfuscation notions. We note that using
random oracles for obfuscation was originally motivated by the hope that giving
circuits access to an idealized “box” computing a random function would make
it easier to obfuscate more functionalities (and eventually perhaps the properties
of the “box” could be realized by a software implementation). We, on the other
hand, show that the existence of such boxes (or a software implementation with
the idealized properties) could actually allow the construction of circuits that
are impossible to obfuscate. Although this negative result does not rule out that
every circuit without random oracle gates can be best-possible obfuscated, we
believe it is illuminating for two reasons. First, as a warning sign when consid-
ering obfuscation in the random oracle model, and secondly as its proof hints
that achieving general purpose best-possible obfuscation in the standard model
would require a significant leap (a discussion of this point appears at the end of
Section 4).

1.1 Related Work

Negative Results. Barak et al. showed that black-box obfuscation cannot always
be achieved. They showed this by presenting families of circuits that cannot be
black-box obfuscated: there exists a predicate that cannot be computed from
black-box access to a random circuit in the family, but can be computed from



(non black-box access to) any circuit in the family. Thus they showed that there
exist circuits that cannot be obfuscated, but it remained possible that almost
any natural circuit could be obfuscated. Goldwasser and Kalai [12], showed that
if the definition of obfuscation is strengthened even further with a requirement
that the obfuscation leak no more information than black-box access even in the
presence of auxiliary input, then a large class of more natural circuits cannot be
obfuscated.

Positive Results. The functionalities for which obfuscation was ruled out in [2]
and [12] are somewhat complex. An interesting open question is whether obfus-
cation can be achieved for simpler classes of functionalities and circuits. Lynn,
Prabhakaran and Sahai [17] were the first to explicitly explore this question.
They suggested working in the random oracle model and focused on obfuscat-
ing access control functionalities (note that impossibility results of [2] and [12]
extend to the random oracle model). At the heart of their construction is the ob-
fuscation of a point function. A point function Ip(x) is defined to be 1 if x = p, or
0 otherwise, and they observed that in the random oracle model point functions
can be obfuscated, leading to obfuscation algorithms for more complex access
control functionalities. Under cryptographic assumptions, it is also known how
to obfuscate point functions without a random oracle. Canetti [6] showed (im-
plicitly) how to obfuscate point functions (even under a strong auxiliary-input
definition), using a strong variant of the Decisional Diffie-Hellman assumption.
Wee [21] presented a point function obfuscator based on the existence of one-way
permutations that are hard to invert on a very strong sense.

Other solutions for obfuscating point functions are known if the obfuscator
doesn’t need to work for every point, but rather for a point selected at ran-
dom from a distribution with some min-entropy. For this relaxed requirement
Canetti, Micciancio and Reingold [8] presented a scheme that uses more general
assumptions than those used by [6] (their solution is not, however, secure in
the presence of auxiliary inputs). Dodis and Smith [9] were able to obfuscate
proximity queries in this framework.

The Random Oracle Model. The random oracle model is an idealization, in which
it is assumed that all parties have oracle access to a truly random function R.
The parties can access this function by querying the random oracle at different
points. The Random oracle methodology is a heuristic methodology, in which
the random oracle is used for building provably secure cryptographic objects,
but then, to implement the cryptographic object in the real world, the random
oracle is replaced by some real function with a succinct representation. This
methodology was introduced by Fiat and Shamir [15], and later formalized by
Bellare and Rogaway [3].

A clear question raised by this methodology is whether the security of the
cryptographic objects in an ideal world with a random oracle can be translated
into security for the real-world implementation. In principle, this was answered
negatively by Canetti, Goldreich and Halevi [7], who showed that there exist
cryptographic schemes that are secure in the presence of a random oracle, but



cannot be secure in the real world, regardless of the implementation of the ran-
dom oracle. Their work left open the possibility that the random oracle method-
ology could still work for “natural” cryptographic practices. This was ruled out
by Goldwasser and Kalai [11] for the Fiat-Shamir method [15], which uses a
random oracle for obtaining digital signatures from identification schemes. The
method was shown to lead to insecure signature schemes regardless of the pos-
sible implementation of the random oracle.

In the context of obfuscation, Lynn, Prabhakaran and Sahai [17] explored
which circuits could be obfuscated in the (programmable) random oracle model,
where the view generated by the black-box simulator is indistinguishable when
taken over a randomly selected oracle. This work considers the same model.
They used the random oracle R to obfuscate a point function Ip (when p is
given to the obfuscator) using the value R(p). On input x the obfuscated circuit
outputs 1 if and only if R(x) = R(p). The only information about p in the
obfuscated circuit is the value R(p), and this ensures that the obfuscation does
not leak any non black-box information about Ip. They then proceeded to show
how to obfuscate point functions with more general outputs (on input x = p the
function outputs some value, and otherwise it outputs ⊥), multi-point functions
and other more complex access control circuits. Narayanan and Shmatikov [16]
gave a positive result for obfuscating databases in the random oracle model. In
this work we explore whether indeed the random oracle model is a promising
setting for further work on obfuscation.

1.2 Organization

We begin by presenting notation and formal definitions in Section 2. We com-
pare our new definition of obfuscation with previous definitions in Section 3. In
Section 4 we present impossibility results for statistically best-possible obfusca-
tion, and for best-possible obfuscation in the random oracle model. We conclude
with discussions and extensions in Section 5.

2 Definitions and Discussion

2.1 Notation and Preliminaries

Notation. Let [n] be the set {1, 2, . . . n}. For x ∈ {0, 1}n, where x = x1x2 . . . xn,
and an index subset M ⊆ [n], where M = {i1, i2, . . . im}, we use x|M to denote
the restriction of x to the indices in M . I.e. x|M = xi1xi2 . . . xim . For a (discrete)
distribution D over a set X we denote by x ∼ D the experiment of selecting
x ∈ X by the distribution D. A function f(n) is negligible if it smaller than any
(inverse) polynomial: for any polynomial p(n), there exists some n0 such that
for all n ≥ n0 we get that f(n) < p(n).

Distributions, Ensembles and Indistinguishability. An ensemble D = {Dn}n∈N

is a sequence of random variables, each ranging over {0, 1}`(n), we consider only



ensembles where `(n) is polynomial in n (we occasionally abuse notation and
use D in place of Dn). An ensemble D is polynomial time constructible if there
exists a probabilistic polynomial time Turing Machine (PPTM) M such that
Dn = M(1n).

Definition 1. The statistical distance between two distributions X and Y over
{0, 1}`, which we denote by ∆(X, Y ), is defined as:

∆(X, Y ) =
1
2

∑

α∈{0,1}`

|Pr[X = α]− Pr[Y = α]|

Definition 2. Computational Indistinguishability (Goldwasser Micali [13], Yao
[22]) Two probability ensembles D and F are computationally indistinguishable
if for any PPTM M, that receives 1n and one sample s from Dn or Fn, and
outputs 0 or 1, there exists a negligible function neg, such that for all n’s:

|Prs∼Dn
[M(1n, s) = 1]− Prs∼Fn

[M(1n, s) = 1]| ≤ neg(n)

The Random Oracle Model. In the random oracle model we assume that all par-
ties (the circuits, obfuscator, adversary etc.) have access to a random oracle and
can make oracle queries. All oracle queries are answered by a single function R,
that is selected uniformly and at random from the set of all functions. Specifi-
cally, for each input length n, R will be a function from {0, 1}n to {0, 1}p(n) for
some polynomial p. For simplicity, we will assume throughout this work that for
all n’s the function R is a random permutation 3 on {0, 1}n. Circuits access the
random oracle by making oracles queries using a special oracle gate. It is im-
portant that we assume that calls to these oracle gates are clearly visible when
running the circuit.

2.2 Definitions of Obfuscation

In the subsequent definitions, we consider a family C of probabilistic polynomial
size circuits to be obfuscated. For a length parameter n let Cn be the circuits in
C with input length n. The size of the circuits in Cn is polynomial in n. If the
obfuscator O is a polynomial-size circuit, then we say it efficiently obfuscates
the family C, and that C is efficiently obfuscatable. Note that when considering
obfuscation in the random oracle model, all circuits are allowed oracle access
(including the circuits to be obfuscated), and all probabilities are taken over the
selection of a random oracle. Whenever we refer to obfuscation, we will mean
(efficient) black-box obfuscation unless explicitly noted otherwise.

Definition 3 (Black-Box Obfuscation [2]). An algorithm O, which takes as
input a circuit in C and outputs a new circuit, is said to be a black-box obfuscator
for the family C, if it has the following properties:
3 Note that all our results hold for random function oracles (as long as the function’s

range is significantly larger than its domain, say at least twice as large.)



– Preserving Functionality:
There exists a negligible function neg(n), such that for any input length n,
for any C ∈ Cn:

Pr[∃x ∈ {0, 1}n : O(C)(x) 6= C(x)] ≤ neg(n)

The probability is over the random oracle and O’s coins.
– Polynomial Slowdown:

There exists a polynomial p(n) such that for all but finitely many input
lengths, for any C ∈ Cn, the obfuscator O only enlarges C by a factor of
p: |O(C)| ≤ p(|C|).

– Virtual Black-box:
For any polynomial size circuit adversary A, there exists a polynomial size
simulator circuit S and a negligible function neg(n) such that for every input
length n and every C ∈ Cn:

|Pr[A(O(C)) = 1]− Pr[|SC(1n) = 1]| ≤ neg(n)

Where the probability is over the coins of the adversary, the simulator and
the obfuscator. In the presence of a random oracle, the probability is also
taken over the random oracle.

Definition 4 (Indistinguishability Obfuscation [2]). An algorithm O, that
takes as input a circuit in C and outputs a new circuit, is said to be a (compu-
tational/statistical/perfect) indistinguishability obfuscator for the family C, if it
has the preserving functionality and polynomial slowdown properties as above,
and also has the following property (instead of the virtual black-box property).

– Computationally/Statistically/Perfectly Indistinguishable Obfuscation:
For all large enough input lengths, for any circuit C1 ∈ Cn and for any
circuit C2 ∈ Cn that computes the same function as C1 and such that
|C1| = |C2|, the two distributions O(C1) and O(C2) are (respectively) com-
putationally/statistically/perfectly indistinguishable.

Definition 5 (Best-Possible Obfuscation). An algorithm O, which takes as
input a circuit in C and outputs a new circuit, is said to be a (computation-
ally/statistically/perfectly) best-possible obfuscator for the family C, if it has
the preserving functionality and polynomial slowdown properties as above, and
also has the following property (instead of the virtual black-box property).

– Computational/Statistical/Perfect Best-Possible Obfuscation:
For any polynomial size learner L, there exists a polynomial size simulator S
such that for every large enough input length n, for any circuit C1 ∈ Cn and
for any circuit C2 ∈ Cn that computes the same function as C1 and such that
|C1| = |C2|, the two distributions L(O(C1)) and S(C2) are (respectively)
computationally/statistically/perfectly indistinguishable.



Informally, this definition guarantees that anything that can be learned effi-
ciently from the obfuscated O(C1), can also be extracted efficiently (simulated)
from any program C2 of similar size for the same function. Thus, any informa-
tion that is exposed by O(C1) is exposed by every other equivalent circuit of
a similar size, and we conclude that O(C1) is a better obfuscation than any of
these other circuits.

When dealing with best-possible obfuscators, we often refer to the “empty”
learner; this is the learner that simply outputs whatever obfuscation it gets as
input. It is simple to see that if there exists an efficient simulator M for the
“empty” learner, then there exists an efficient simulator M′ for every efficient
learner L: M′ on input C2 simply computes M(C2) and outputs the result of
L(M(C2)). Thus, an equivalent definition to ‘Best Possible’ can do away with the
leaner and only require the existence of an efficient simulator, i.e., a simulator
S such that for circuits C1, C2 of identical size and identical functionality the
distributions O(C1) and S(C2) are indistinguishable.

Note that when we refer to best-possible or indistinguishability obfuscators
we always mean efficient and computational obfuscators unless we explicitly note
otherwise. By perfect indistinguishability, we mean that the distributions are
identical (statistical distance 0). For statistical indistinguishability, unless noted
otherwise, we only assume that the distinguisher’s advantage (the statistical
distance) is smaller than a (specific) constant.4 This strengthens negative results.

3 Comparison with Prior Definitions

In this section we compare the new definition of best-possible obfuscation to the
black-box and indistinguishability definitions proposed by Barak et al. [2].

3.1 Best-Possible vs. Black-Box Obfuscation

Best-possible obfuscation is a relaxed requirement that departs from the black-
box paradigm of previous work. We first observe that any black-box obfuscator
is also a best-possible obfuscator.

Proposition 1. If O is an efficient black-box obfuscator for circuit family C,
then O is also an efficient (computationally) best-possible obfuscator for C.

Proof. Assume for a contradiction that O is not a best-possible obfuscator for
C. This implies that there is no best-possible simulator for the “empty” learner
that just outputs the obfuscated circuit it gets. In particular, O itself is not a
good simulator. Thus there exists a polynomial p and a distinguisher D, such

4 The existence of an inefficient perfectly best-possible obfuscator, implies the exis-
tence of an efficient one that uses the simulator to obfuscate. A similar argument
also applies to statistically best-possible obfuscation, unless the statistical distance
guarantee is very weak.



that for infinitely many input lengths n, there exist two circuits C1, C2 ∈ Cn,
such that |C1| = |C2| and C1 and C2 are equivalent, but:

|Pr[D(O(C1)) = 1]− Pr[D(O(C2)) = 1]| ≥ p(n)

Now consider D as a predicate adversary for the black-box obfuscator O. The
black-box simulator S for D clearly behaves identically on C1 and C2 (because
they have the same functionality), but D’s behavior on O(C1) and O(C2) is non-
negligibly different. Thus (for infinitely many input lengths) S is not a black-box
simulator for D, a contradiction.

Next, we provide a (weak) separation result. We exhibit a natural (low)
complexity class, that of languages computable by polynomial size ordered bi-
nary decision diagrams (POBDDs), such that best-possible obfuscation within
the class is achievable, but there are simple functionalities that are provably
impossible to black-box obfuscate within the class.

Ordered Binary Decision Diagrams (OBDDs). The computational model of or-
dered binary decision diagrams was introduced by Bryant [5]. An ordered binary
decision diagram is a rooted directed acyclic graph with a vertex set V contain-
ing non-terminal vertices, each with two children, and terminal vertices (without
children), each labeled 0 or 1. Each edge e in the graph is marked with an input
literal `e (e.g. `e could be x1, x8 etc.). For every non-terminal vertex, the labels
of its (two) outgoing edges should be negations of each other (e.g. x3 and x3).
An input x ∈ {0, 1}n is accepted by an OBDD if and only if after removing every
edge e for which `e = 0 there exists a path from the root node to a terminal
node labeled by 1. In addition, in an OBDD, on every path from the root vertex
to a terminal vertex, the indices of the literals of edges on the path must be
strictly increasing. We will focus on polynomial-size OBDDs, or POBDDs. We
note that another way to view POBDDs is as logarithmic-space deterministic
Turing Machines whose input tape head can only move in one direction (from
the input’s first bit to its last).

Bryant [5] showed that OBDDs have a simple canonical representation. For
any function, there exists a unique smallest OBDD that is its canonical repre-
sentation. Moreover, for polynomial-size OBDDs, this canonical representation
is efficiently computable.

Note that we defined obfuscation for circuits, not OBDDs, but for every
OBDD, there exists a boolean circuit (that computes the same functionality)
from which it is easy to extract the OBDD. When we refer to obfuscating the
family of OBDDs, we are implicitly referring to obfuscating the underlying family
of circuits representing OBDDs.

We begin by observing that POBDDs can be perfectly best-possible obfus-
cated as POBDDs (namely the output of the obfuscator is a POBDD itself).
This is a corollary of POBDDs having efficiently computable canonical repre-
sentations.



Proposition 2. There exists an efficient perfectly best-possible (and perfectly
indistinguishable) obfuscator for POBBDs.

Proof. The best-possible obfuscator for a POBDD P simply takes P , computes
(efficiently) its canonical representation, and outputs that program as the best-
possible obfuscation. The canonical representation has the same functionality
as P , is no larger than P , and (most significantly) is unique, depending only
on the functionality of P . The simulator gets a POBDD P ′ and also efficiently
computes its canonical representation. The canonical representations of P and
P ′ are identical if and only if P and P ′ compute the same functionality. Thus
the obfuscator is indeed a perfectly best-possible obfuscator for the family of
POBDDs.

We next show that there exists a family of languages computable by POB-
DDs, that cannot be black-box obfuscated (efficiently or inefficiently) as POB-
DDs (i.e the resulting program itself being represented as a POBDD). This
gives a (weak) separation between best-possible and black-box obfuscation. The
weakness is that it remains possible that any input POBDD can be black-box
obfuscated such that the output circuit is no longer a POBDD but is in some
higher complexity class.

Proposition 3. There exists a family of languages computable by POBDDs,
that cannot be black-box obfuscated as POBDDs.

Proof (Sketch). Intuitively, because POBDDs have a simple efficiently com-
putable canonical representation, non black-box information can be extracted
from a POBDD by reducing it to its “nice” canonical form, and then extracting
information from this canonical form.

More formally, consider (for example) the simple family of point functions
{Ip}p∈{0,1}n , where the function Ip outputs 1 on input the point p and 0 every-
where else. Note that point functions are computable by POBDDs. Now observe
that any POBDD computing a point function for a point p can be reduced to its
canonical representation, from which p is easily extracted. Thus for any supposed
obfuscator that obfuscates point functions as POBDDs there exists an adversary
that (for every point) can extract all the bits of the point from the “obfuscated”
POBDD. Clearly, no black-box simulator can successfully extract even a single
bit of the point for a non-negligible fraction of point functions. Thus there exists
no black-box obfuscator that obfuscates POBDDS computing point functions as
POBDDs.

We note that many other natural languages computable by POBDDs cannot
be black-box obfuscated as POBDDs. Black-box obfuscation of POBDDs as more
complex circuits remains an intriguing open question.

3.2 Best-Possible vs. Indistinguishability Obfuscation

As mentioned above, the notions of best-possible obfuscation and indistinguisha-
bility obfuscation are related, though the guarantees given by these two types



of obfuscation are different. In this section we will show that any best-possible
obfuscator is also an indistinguishability obfuscator. Furthermore, for efficient
obfuscation, the two notions are equivalent. For inefficient obfuscation (which is
still interesting), however, the notions are not equivalent unless the polynomial
hierarchy collapses. In fact, inefficient indistinguishability obfuscators exist un-
conditionally (see [2]). On the other hand, building even inefficient best-possible
obfuscators remains an interesting open question. We begin by showing that
best-possible obfuscation is in fact at least as strong as indistinguishability ob-
fuscation.

Proposition 4. If O is a perfectly/statistically/computationally best-possible
obfuscator for circuit family C, then O is also a (respectively) perfect/statistical/
computational indistinguishability obfuscator for C.

Proof (Sketch). To prove the claim, consider the “empty” learner L that just
outputs whatever obfuscation it is given, and its simulator S. Let δ be the
computational or statistical distinguishability in the (computational or per-
fect/statistical) guarantee of the obfuscator. We get that for any two circuits
C1 and C2 that are of the same size and compute the same functionality:

δ(L(O(C1)),S(C2)) = δ(O(C1),S(C2)) ≤ ε

δ(L(O(C2),S(C2))) = δ(O(C2),S(C2)) ≤ ε

Thus (since computational and statistical distinguishabilities are transitive):

δ(O(C1),O(C2)) ≤ 2ε

Note that the perfect/statistical/computational guarantee is preserved.

As noted above, if we restrict our attention to efficient obfuscators, indistin-
guishability obfuscators are also best-possible obfuscators.

Proposition 5. If O is an efficient perfect/statistical/computational indistin-
guishability obfuscator for a circuit family C, then O is also an efficient (respec-
tively) perfectly/statistically/computationally best-possible obfuscator for C.

Proof. Let O be an efficient indistinguishability obfuscator. Then for any learner
L, let S be the (efficient) simulator that gets a circuit C2, runs O(C2), and then
activates L on O(C2). We get that if O is a perfect/statistical/computational in-
distinguishability obfuscator, then for any two circuits C1 and C2 that are of the
same size and compute the same functions, the two distributions L(O(C1)) and
S(C2) = L(O(C2)) are perfectly/statistically/computationally indistinguishable
(because O is an indistinguishability obfuscator). Thus O is also an efficient
best-possible obfuscator.

Note that the efficiency of the indistinguishability obfuscator is essential to
guarantee the efficiency of the simulator, without which the obfuscator does not
meet the best-possible definition.



It is important to note that there is no reason to believe that the two no-
tions of obfuscation are equivalent for inefficient obfuscation. In fact, whereas
[2] design exponential-time indistinguishability obfuscators, there is no known
construction for inefficient best-possible obfuscators. We believe that even con-
structing inefficient best-possible obfuscators is interesting.

We end this subsection by observing that if P = NP then it is not hard to
construct efficient perfect best-possible obfuscators (and indistinguishability ob-
fuscators) for every polynomial-size circuit. In fact this complexity assumption is
almost tight. We will show in Theorem 1, that if statistically best-possible obfus-
cators can be built even for very simple circuits, then the polynomial hierarchy
collapses to its second level.

Proposition 6. If P=NP then the family of polynomial-sized circuits can be
efficiently perfectly best-possible obfuscated.

Proof. Assume P = NP . For any circuit C, it is possible to efficiently extract the
smallest lexicographically first circuit Cmin that is equivalent to C (this problem
is solvable using a language in the second level of the polynomial hierarchy). As
Barak et al. [2] note, such an extraction procedure is a perfectly indistinguishable
obfuscation of C, and thus there exists an efficient perfect indistinguishability
obfuscator for the family of polynomial-size circuits. By Proposition 5 it is also
an efficient perfect best-possible obfuscator for the family of polynomial-size cir-
cuits. Note that even if P 6= NP then we get an (inefficient) indistinguishability
obfuscator. It remains, however, unclear whether we can get an inefficient best-
possible obfuscator, as the (always efficient!) simulator can no longer run the
“circuit minimization” procedure.

4 Impossibility Results for Best-Possible Obfuscation

4.1 Statistically best-Possible Obfuscation

In this section we present a hardness result for statistically best-possible obfus-
cation. In Section 3 it was shown that if P = NP then every polynomial-sized
circuit can be perfectly best-possible obfuscated, thus we cannot hope for an un-
conditional impossibility result. We show that the condition P = NP is (nearly)
tight, and in fact the existence of statistically best-possible obfuscators even
for the class of languages recognizable by 3-CNF circuits (a sub-class of AC0)
implies that the polynomial hierarchy collapses to its second level. This result
shows the impossibility of statistically best-possible obfuscation for any class
that contains 3-CNF formulas (and in particular also for the class of general
polynomial sized circuits).

Theorem 1. If the family of 3-CNF formulas can be statistically best-possible
obfuscated (not necessarily efficiently), then the polynomial hierarchy collapses
to its second level.



Proof (Intuition). We begin by considering the case that the family of 3-CNF
formulas can be perfectly best-possible obfuscated (not necessarily efficiently)
while perfectly preserving functionality (i.e. the obfuscated circuit never errs).
We can use the Simulator S for the “empty” learner, to construct an NP proof
for Co-SAT (a Co-NP -complete problem). To see this, consider an input 3-CNF
formula ϕ of size |ϕ|. We would like to find a witness for non-satisfiability of
ϕ. Towards this end, we first construct an unsatisfiable formula ψ of size |ϕ|. A
witness for the non-satisfiability of ϕ is a pair of random strings (r, r′) such that
the output of the simulator S on ϕ with randomness r is equal to its output on
ψ with randomness r′. This proof system is indeed in NP :

– Efficiently Verifiable. The simulator is efficient, and thus the witness is effi-
ciently verifiable.

– Complete. If ϕ is unsatisfiable, then ϕ and ψ compute the same function
(the constant 0 function) and are of the same size. We know that O is
a perfect best-possible obfuscator and thus the distributions O(ϕ), S(ϕ),
S(ψ), O(ψ) are all identical. This implies that there must exist (r, r′) such
that S(ϕ, r) = S(ψ, r′).

– Sound. If ϕ is satisfiable, then because the obfuscator perfectly preserves
functionality, the distributions O(ϕ), O(ψ) are disjoint (they are distribu-
tions of circuits with different functionalities). Thus the distributions S(ϕ),
S(ψ) of the (perfect) simulator’s output are also disjoint, and there exist no
(r, r′) such that S(ϕ, r) = S(ψ, r′).

The full proof for the case of statistically best-possible obfuscation follows
along similar lines, giving a reduction from a Co-NP -complete problem (circuit
equivalence) to a problem in AM .5 By the results of Fortnow [10], Aliello and
H̊astad [1], and Boppana, H̊astad and Zachos [4] (see also Feigenbaum and Fort-
now [14]), this collapses the polynomial hierarchy to its second level. The full
proof is omitted from this extended abstract.

Proposition 2 and Theorem 1 give examples of circuit classes can and can-
not be statistically best-possible obfuscated. The proofs give characterizations
of circuit classes that can be statistically best-possible obfuscated. A sufficient
condition for statistically best-possible obfuscation of a class of circuits is hav-
ing an efficiently computable canonical representation, a necessary condition is
having a statistical zero knowledge proof for the equivalence problem.

Finally, a corollary of this theorem is that the same class of 3-CNF formulas
cannot be statistically indistinguishability obfuscated in polynomial time unless
the polynomial hierarchy collapses. This is the first impossibility result for in-
distinguishability obfuscation in the standard model.

Corollary 1. If the family of 3-CNF formulas can be efficiently statistically in-
distinguishability obfuscated, then the polynomial hierarchy collapses to its second
level.
5 Actually, this is a problem in statistical zero knowledge: the complement of the

Statistical Difference Problem, introduced by Sahai and Vadhan [20]



Proof. By Proposition 5, if there exists an efficient statistical indistinguishability
obfuscator for the family of 3-CNFs, then there also exists an efficient statistically
best-possible obfuscator for the same family. This, in turn, implies (by Theorem
1) that the polynomial hierarchy collapses to its second level.

4.2 Computationally Best-Possible Obfuscation

In this section we present an impossibility result for (efficient) computationally
best-possible obfuscation in the (programmable) random oracle model. We show
how to use a random oracle to build circuits for point functions that cannot
be best-possible obfuscated. We note that the use of the random oracle both
strengthens and weakens this result. The result is strengthened because a random
oracle could conceivably help obfuscation (a la [17]), but weakened because the
random oracle is used to build a circuit that cannot be obfuscated. Moreover, in
the proof we need to assume that a distinguisher can see the obfuscated circuit’s
oracle calls and that it can access the random oracle itself. It is still possible
that circuits that do not use the random oracle can be best-possible obfuscated.

We show that a specific family of circuits for computing point functions
cannot be obfuscated in the presence of a random oracle R. A point function
Ip is the function that outputs 1 on input p and 0 on all other inputs. We
begin by presenting the family of point function circuits for which we will show
impossibility of obfuscation.

Definition 6 (The circuit family {CM
p }). For any input length n, the family

of circuits {CM
p }n defines a set of circuits on inputs of length n. Each circuit

CM
p computes the point function Ip on the point p ∈ {0, 1}n, and is defined by

the point p and an index subset M ⊆ [n] (all index subsets in this section are of
size n

2 ). The information that the circuit CM
p gives about p is:

– The index subset M is included in CM
p “in the clear”.

– The bits of p that aren’t in the index subset M (p|[n]−M ) are also given in
the clear.

– The bits of p that are in M (p|M ) are “hidden”, the only information given
about them is R(p|M ).

For an input x, to compute the point function Ip, the circuit CM
p outputs

1 if and only if x is equal to p in the indices that aren’t in M (x|[n]−M =
p|[n]−M ), and the random oracle gives the same values on x and p restricted to
M (R(x|M ) = R(p|M )). Thus CM

p (x) = 1 if and only if x = p, otherwise the
circuit outputs 0.

We also take the family {Ip} to be the family of point function circuits that
contain their point in the clear, and are padded to be of the same size as the
circuits {CM

p } on each input length. We claim that the family of point function
circuits {CM

p } ∪ {Ip} cannot be best-possible obfuscated.



Theorem 2. The circuit family {CM
p }∪{Ip} cannot be efficiently computation-

ally best-possible obfuscated.

Proof (Proof Intuition). Observe that any obfuscator O must preserve the func-
tionality of a circuit CM

p . Furthermore, the only information the obfuscator has
about the indices of the point p that are in the subset M is the value R(p|M ). To
preserve functionality, for any input x, the obfuscated circuit O(CM

p ) needs to
find out whether x = p. Now because the only information available to the obfus-
cator and the obfuscated circuit about p|M is the value R(p|M ), for most inputs
x, the obfuscated circuit must ask the random oracle for the value R(x|M ). Thus
for many x’s one of the (polynomially many) oracle calls of O(CM

p ) should be
to R(x|M ).

In the proof we construct a distinguisher between obfuscated circuits and
the output of the “empty” learner’s simulator. For an index subset T ⊆ [n]
and input x ∈ {0, 1}n, we examine the distinguisher DT,x that activates the
obfuscated circuit it was given, O(CM

p ) (for some index subset M and point p),
on the input x, and tries to guess whether T was the subset used in the underlying
circuit that was obfuscated (i.e. whether M = T ). To do this, the distinguisher
runs O(CM

p ) on the input x and outputs 1 if and only if the obfuscated circuit
queried the random oracle on the input x|T . Recall that we concluded above
that if M = T , then we expect the obfuscated circuit to query the random
oracle on the input x|T . Thus, when the distinguisher DT,x gets O(CM

p )(x), it
has an advantage in deciding whether M = T or not. This advantage disappears
when the distinguisher is activated on the output of a simulator that was given
the circuit Ip: the simulator was given no information about M , so its output
cannot help the distinguisher determine whether or not M = T . The full proof
is omitted from this extended abstract.

The family of circuits that we show cannot be obfuscated is a family that
computes point functions. This may seem contradictory, as Lynn, Prabhakaran
and Sahai [17] showed that a class of circuits computing point functions can be
obfuscated in the random oracle model. The source of this disparity is that they
(as well as all other known positive results on obfuscating point functions) only
consider obfuscators that get the point in the clear, whereas the family of point
function circuits that we present ({CM

p }) hides information about the point.
Malkin [18], was the first to ask whether any point function implementation can
be black-box obfuscated.

Thus Theorem 2 shows impossibility for simpler and more natural function-
alities than those considered in previous results, but does so using circuits with
random oracle gates.

Extensions. We note that this impossibility result applies also to black-box ob-
fuscation (the proof is omitted from this extended abstract, but note that the
distinguisher in the theorem can be viewed as a predicate adversary). One pos-
sible objection to this impossibility result, is that the information revealed by
obfuscation of circuits in the family {CM

p } (namely the subset M) is not nec-
essarily information related to the point p. We note, however, that unless an



obfuscator guarantees that no non black-box information is revealed by the ob-
fuscation, for circuits for which the point p is related to the subset M , the
obfuscated circuit may leak non black-box information about the point p.

Implications for a world without random oracles. We conclude with a discussion
of the ways in which our proof uses the random oracle model, and how one could
hope to remove this assumption. Our construction uses the random oracle R in
two ways. First, R is used to hide information about p in the circuit family
{CM

p }. Essentially, we use R to obfuscate a point function (where the point is
p|M ). Intuitively, since we know how to (black-box) obfuscate point functions
without using random oracles, we could use (strong) cryptographic assumptions
in place of the random oracle for this.

The second place in our proof where we use the properties of random oracles
is when we assume a distinguisher can see the points on which the obfuscated
circuit queries the random oracle. If we want to get rid of the random oracles,
this is a more troubling assumption. The issue is that even if we could use some
other method to hide information about the point p in the standard model, there
is no reason to assume we could identify any internal computation of the obfus-
cated circuit. For example, consider using Canetti’s point function obfuscation
and giving the obfuscator a circuit C that hides some information on p by expos-
ing only (r, rp|M ). Even if on any input x the obfuscated circuit always computes
(r, rx|M ), there is no guarantee that a distinguisher can identify these compu-
tations! Thus O(C) may not expose any information on M . We note, however,
that to prove that an obfuscator can obfuscate any circuit computing a point
function, one would have to construct an obfuscator that indeed hides internal
computations. Thus it seems that even for achieving the (seemingly modest)
goal of best-possible obfuscation for polynomial-size point-function circuits, one
would have to present a method for hiding complex internal computations of a
circuit. Such a method, in and of itself, would likely have interesting implications.

5 Concluding Remarks and Discussions

We conclude with a discussion of best-possible obfuscation and issues raised in
this work.

Input/Output Representation. Several of our results highlight the issue of the
representation of an obfuscator’s input and output. At times (in Section 3) we
restrict the representation of both the obfuscator’s input and output functional-
ity to be “simple” circuits representing POBDDs. At other times (in the proof
of Theorem 2), we construct complex circuits that hide information about their
functionality from the obfuscators. In general, restricting the input representa-
tion makes the task of obfuscation easier (see discussion in section 4.2), whereas
restricting the output representation makes the task of obfuscation harder, and
we use this in Proposition 3 to show that point functions cannot be black-box
obfuscated as POBDDs. Previous positive results on obfuscation considered ob-
fuscators that get a particular representation of the functionality (e.g. the point



p for the point function Ip). Future work on black-box (and non black-box) ob-
fuscation should consider the question of which representations of the desired
functionality are obfuscated.

This issue was also raised by Malkin [18], who asked whether any point
function implementation can be black-box obfuscated in the standard model.
An relaxed (but related6) formulation of this question is whether the family of
polynomial-size circuits computing point functions can be best-possible obfus-
cated. The proof of Theorem 2 answers this question negatively in the presence of
random oracles, but either an impossibility proof or a provably secure obfuscator
would likely have interesting consequences.

Circuit Sizes. In our definition of best-possible obfuscation (Definition 5) we
compare the obfuscated circuit O(C1) with circuits C2 of the same size as C1

(and computing the same functionality). This definition requires that the ob-
fuscation of C1 leak as little information as any equivalent circuit of a specific
(polynomially) smaller size. We could make stronger requirements, such as leak-
ing less information than an equivalent circuit C2 that is as large as O(C1), twice
as large as C1, etc. (all results would still hold). In general, the larger the circuit
used as a benchmark (C2), the stronger the definition. The important point is
guaranteeing that O(C1) leaks as little information as any other functionally
equivalent circuit of a related size.

Auxiliary Input. Goldwasser and Kalai [12] augment the virtual black-box re-
quirement of obfuscation to hold in the presence of auxiliary input. They note
that this is an important requirement for any obfuscation that is used in practice,
as auxiliary input comes into play in the real world. Following this argument, we
could extend the best-possible obfuscation requirement to hold in the presence
of auxiliary input. This is a strengthening of the definition, and thus all nega-
tive results clearly still hold. The positive result of Proposition 2 (obfuscating
POBDDs) also holds even in the presence of (dependent) auxiliary input.

Weaker Variants. In light of the negative results of Theorems 1 and 2 it is
interesting to consider weaker variants of best-possible obfuscation (Definition
5). While the variants below lose some of the appealing intuitive “garbling”
guarantee of Definition 5, meeting any of them would all give at least some
indication that the obfuscator truly garbles circuits.

– Hiding Less Information. One natural approach is to follow in the footsteps
of Barak et al. [2], and consider best-possible predicate obfuscators: an obfus-
cation is predicate best-possible if any predicate of the original circuit that
can be learned from the obfuscation, could also be learned from any other

6 This formulation is equivalent to the original question raised by Malkin under the
assumption that point functions can indeed be obfuscated when the point is given in
the clear. In this case, a best-possible obfuscation leaks as little information as the
black-box obfuscated point function circuits, and is thus also a black-box obfuscation.



circuit of a similar size computing the same functionality. While this defini-
tion is weaker than computationally best-possible obfuscation, the proof of
Theorem 2 rules out even general-purpose predicate best-possible obfusca-
tion in the random oracle model (and gives some intuition that this type of
obfuscation would be hard to achieve int he standard model).

– Weaker Indistinguishability. Canetti [6] and Wee [21] relax the virtual black-
box requirement, requiring only polynomially small indistinguishability be-
tween the output of an adversary and its simulator. Moreover, they allow
the simulator’s size to depend (polynomially) on this indistinguishability
parameter. We note that negative results in this work (Theorems 1 and 2)
hold even if we require only polynomially small indistinguishability and al-
low the simulator’s size to depend (polynomially) on the indistinguishability
parameter.

– Weaker Functionality. Definition 5 requires that with all but negligible prob-
ability, the obfuscated circuit perfectly preserves the functionality of the orig-
inal circuit. We could relax this, and require only that for every input, with
all but a small constant error probability, the obfuscated circuit outputs the
same output as the original circuit. Our negative results apply even under
this weakened preserving functionality requirement. The positive result on
best-possible obfuscation of POBDDs (Proposition 2) gives an obfuscator
that perfectly preserves the functionality of the circuit it obfuscates.
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