Universal Forgery and Key Recovery Attacks on ELmD Authenticated Encryption Algorithm

Aslı Bay ${ }^{1}$, Oğuzhan Ersoy ${ }^{2}$, Ferhat Karakoç ${ }^{1}$
${ }^{1}$ TÜBITAK-BILGEM-UEKAE $\quad{ }^{2}$ Boğaziçi University

ASIACRYPT 2016, Hanoi, VIETNAM

Outline

Background
Authenticated Encryption and CAESAR Competition Specification of ELmD

Cryptanalysis of ELmD
Recovering Internal State L
Forgery Attack
Exploiting the Structure of ELmD
Key Recovery Attacks

Conclusion

Encryption vs. Authenticated Encryption

- Encryption Provides Confidentiality
- Message Authentication Provides Data-Origin Authentication
- In many applications, with encryption, message authentication is needed:

Encryption vs. Authenticated Encryption

- Encryption Provides Confidentiality
- Message Authentication Provides Data-Origin Authentication
- In many applications, with encryption, message authentication is needed:

Confidentiality

CAESAR Competition

- CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness
- Aim: identify a portfolio of authenticated ciphers that

1. offer advantages over AES-GCM
2. are suitable for widespread adoption

- Funded by NIST

CAESAR Competition Timeline

CAESAR Competition: Submissions

- Block Cipher Based: AEGIS, AES-COPA, AES-JAMBU, AES-OTR, AEZ, CLOC, Deoxys, ELmD, Joltik, OCB, POET, SCREAM, SHELL, SILC, Tiaoxin,...
- Stream Cipher Based: ACORN, HS1-SIV, MORUS, TriviA-ck
- Sponge Based: Ascon, ICEPOLE, Ketje, Keyak, NORX, PRIMATEs, STRIBOB, π-Cipher, \ldots
- Permutation Based: Minalpher, PAEQ,...
- Compression Function Based: OMD

Specification of ELmD

- Proposed by Datta and Nandi for CAESAR
- A Third-Round CAESAR candidate
- A block cipher based Encrypt-Linear-mix-Decrypt authentication mode:
Process message in the Encrypt-Mix-Decrypt paradigm
- Accepts Associated Data (AD)
- Online and Parallelizable

Linear Mixing Function ρ

- ρ function:

- Field multiplication modulo $p(x)=x^{128}+x^{7}+x^{2}+x+1$ in $G F\left(2^{128}\right)$

Message Padding Rule

Message: $M=M_{1}\left\|M_{2}\right\| \cdots \| M_{\ell}^{*}$

- Submitted Version:

$$
M_{\ell}=\left\{\begin{array}{l}
\left(M_{\ell}^{*} \| 10^{*}\right) \text { if }\left|M_{\ell}^{*}\right|<128, \\
M_{\ell}^{*} \text { else }
\end{array} \quad \text { and } M_{\ell+1}=\oplus_{i=1}^{\ell} M_{i}\right.
$$

- Modified Version:

$$
M_{\ell}=\left\{\begin{array}{l}
\left(\oplus_{i=1}^{\ell-1} M_{i}\right) \oplus\left(M_{\ell}^{*} \| 10^{*}\right) \text { if }\left|M_{\ell}^{*}\right|<128 \\
\left(\oplus_{i=1}^{\ell-1} M_{i}\right) \oplus M_{\ell}^{*} \text { else }
\end{array}\right.
$$

$$
M_{\ell+1}=M_{\ell}
$$

Parameters of ELmD

- AES-128 is used as E_{K} in either 6 or 10 rounds $\operatorname{ELmD}(6,6)$ and $\operatorname{ELmD}(10,10)$
- Provisions of intermediate tag (if required) Faster decryption and verification
- Internal parameter mask is either $L=\operatorname{AES}^{10}(0)$ or $L=\operatorname{AES}^{6}\left(\operatorname{AES}^{6}(0)\right)$

Processing Associated Data

- IV is generated by processing Associated Data (D)
- $D_{0}=$ public number $\|$ parameters and $D=D_{0}\left\|D_{1}\right\| \cdots \| D_{d}^{*}$, where $D_{d}=D_{d}^{*} \| 10^{*}$ if $\left|D_{d}^{*}\right| \neq 128$, otherwise $D_{d}=D_{d}^{*}$
- If $\left|D_{d}^{*}\right| \neq 128$, Masking $=7 \cdot 2^{d-1} \cdot 3 L$

Encryption

Padded Message: $M=M_{1}\left\|M_{2}\right\| \cdots \| M_{\ell}$
Ciphertext: $(C, T)=\left(C_{1}\left\|C_{2}\right\| \cdots \| C_{\ell}, C_{\ell+1}\right)$

$\left|M_{1}^{*}\right|=128$
$\left|M_{1}^{*}\right|<128$

Decryption and Tag Verification

- Decryption: Inverse of Encryption
- Tag Verification: Release plaintext if $M_{\ell+1}=M_{\ell}$ else \perp is returned

Security Claims

- 62.8-bit security for Confidentiality for any version
- 62.4-bit security for Integrity for any version
- Authors' claim for Key Recovery Attacks
"... one can not use this distinguishing attack to mount a plaintext or key recovery attack and we believe that our construction provides $\mathbf{1 2 8}$ bits of security, against plaintext or key recovery attack"
We disprove by a key recovery attack on $\operatorname{ELmD}(6,6)$

Recovering Internal State L

- Reminder: $L=A E S^{6}\left(A E S^{6}(0)\right)$ or $L=A E S^{10}(0)$
- L is used to mask associated data, plaintexts and ciphertext
- By collision search of ciphertexts with approximate complexity 2^{65} due to birthday attack
- Recovering L helps us to make forgery and key recovery attacks

Recovering Internal State L

- Take fixed D_{0}, let
$(D, M)=\left(D_{1}, M_{1}\right)=(\alpha, M)$ and $\left(D^{\prime}, M^{\prime}\right)=\left(D_{1}^{\prime}, M_{1}^{\prime}\right)=(\beta, M)$ be two sets of message pairs s.t. $\alpha, \beta \in\left\{0,1, \ldots, 2^{64}-1\right\}$
- α is an incomplete block and β is complete, i.e., $|\alpha|=64$ and $|\beta|=128$
- $\left(\alpha \| 10^{63}\right) \oplus \beta$ scans all values in $\mathbb{F}_{2^{128}}$
- Search a collision in the first ciphertexts, i.e., $C_{1}=C_{1}^{\prime}$
- We recover L by solving $D D_{1}=D D_{1}^{\prime}$

$$
D_{1} \oplus 3 \cdot 7 \cdot L=D_{1}^{\prime} \oplus 3 \cdot 2 \cdot L
$$

Universal Forgery

- Target Message: $\left(D_{0}, D, M\right)$
- First, query $\left(D_{0}, M_{1}=D_{0} \oplus 2 L\right)$, and obtain $\left(C_{1}, T\right)$
- We obtain

$$
E_{K}\left(C_{1}^{\prime} \oplus 3^{2} L\right)=2 / V^{\prime}
$$

Universal Forgery

- Target Message: $\left(D_{0}, D, M\right)$
- Query $\left(D^{\prime}, M\right)$ such that $D_{0}^{\prime}=D_{0}$, $D_{1}^{\prime}=C_{1} \oplus 3^{2} L \oplus 2 \cdot 3 L$, $D_{2}^{\prime}=D_{0} \oplus 3 L \oplus 2^{2} \cdot 3 L$ and D obtain ciphertext C and tag T
- (C, T) pair is also valid for (D, M)

Exploiting the Structure of ELmD

Using the recovered L value, we can obtain two types of plaintext pairs for AES:

1. μ-multiplicative Pairs: For any P_{1} and μ,

$$
\mu \cdot E\left(P_{1}\right)=E\left(P_{2}\right)
$$

2. 1-difference Pairs:

$$
E\left(Q_{1}\right)=E\left(Q_{2}\right) \oplus 1
$$

Using these pairs, we can query any ciphertext to the decryption mode of the cipher AES

2-multiplicative Pairs: $\left(R_{1}, R_{2}\right)$ with $2 \cdot E\left(R_{1}\right)=E\left(R_{2}\right)$

- Similar method with Forgery Attack
- First, query $\left(D_{0}, M_{1}=D_{0} \oplus 2 L\right)$ and obtain $\left(C_{1}, T\right)$
- We obtain

$$
E_{K}\left(C_{1}^{1} \oplus 3^{2} L\right)=2 I V^{1}
$$

2-multiplicative Pairs: $\left(R_{1}, R_{2}\right)$ with $2 \cdot E\left(R_{1}\right)=E\left(R_{2}\right)$

μ-multiplicative Pairs: $\left(P_{1}, P_{2}\right)$ with $\mu \cdot E\left(P_{1}\right)=E\left(P_{2}\right)$

- Obtain the plaintext R_{2} such that $2 \cdot E\left(P_{1}\right)=E\left(R_{2}\right)$
- $\mu^{\prime}=3^{-1}(\mu \oplus 1)$, and $\mu^{\prime} \in \mathbb{F}_{2^{128}}$ can be represented as

$$
2^{127} \cdot m_{1} \oplus 2^{126} \cdot m_{2} \oplus \cdots \oplus 2 \cdot m_{127} \oplus m_{128} \text { where } m_{i} \in\{1,2\}
$$

1-difference Pairs: $\left(R_{1}, R_{2}\right)$ with $E\left(R_{1}\right)=E\left(R_{2}\right) \oplus 1$

Generate 2-multiplicative pairs:
$E\left(D D_{1}\right)=2 \cdot E\left(D D_{0}\right)$ and $E\left(M M_{2}\right)=2 \cdot E\left(M M_{1}\right)$

Querying Decryption Oracle of AES

- Obtain a pair $\left(R_{1}, R_{2}\right)$ with $E\left(R_{1}\right)=E\left(R_{2}\right) \oplus 1$.
- Obtain plaintext R_{3} such that $3^{-1} E\left(R_{1}\right)=E\left(R_{3}\right)$.
- By querying associated data satisfying $I V=0$ and message with $M M_{1}=R_{3}, M M_{2}=R_{2}$, we obtain $C C_{2}$ which is equal to decryption of 1 , i.e., $E\left(C C_{2}\right)=0^{127} 1$.
- This allows to mount a chosen ciphertext attack: pick ciphertext as μ and find P_{2} s.t. $E\left(P_{2}\right)=\mu$
- Obtaining corresponding plaintext for any given ciphertext costs 2^{8} encryption operations.

Key Recovery Attack on ELmD $(6,6)$

- In 2000, by using partial sums an attack on 6-round AES was given.
- with a time and data complexities of 2^{44} and $2^{34.6}$, respectively.
- This attack, in chosen plaintext scenario, can be easily adapted to chosen ciphertext case because of the AES structure.
- The total time complexity is $2^{65}+2^{8} \times 2^{34.6}+2^{44} \approx 2^{65}$
- In addition, we propose a Demirci-Selçuk meet-in-the-middle attack
- with (online) time and data complexities of 2^{66} and 2^{33}, respectively.
- The total time complexity is $2^{65}+2^{8} \times 2^{33}+2^{66} \approx 2^{66.6}$

Comparison with the Previous Results

- Zhang and Wu analysed ELmD in terms of both authenticity and privacy
- Authenticity: They provide successful forgery attacks
- Privacy: they propose a truncated differential analysis of reduced version of ELmD with 2^{123} time and memory complexities, however they take:
- $L=A E S^{4}(0) \rightarrow$ MITM attack is enough to find the key
- $\operatorname{ELmD}(4,4) \rightarrow$ not in the proposal of ELmD

Conclusion

- First cryptanalysis of full-round ELmD
- We disprove the security claim:

We reduced the security of $\operatorname{ELmD}(\operatorname{ELmD}(6,6))$ from 128 to 65 bits

Thank you for your attention!

