Partitioning via Non-Linear Polynomial Functions: More Compact IBEs from Ideal Lattices and Bilinear Maps

Shuichi Katsumata (The University of Tokyo)

 Shota Yamada (AIST)
ASIACRYPT Born in 1991 (Japan) Me Born in 1991 (Japan)

WikipediA

The Free Encyclopedia

Asiacrypt

From Wikipedia, the free encyclopedia

Asiacrypt (also ASIACRYPT) is an important international conference for cryptography research. The full rame of the conference is currently Irtemational Corference on the Theory and Application of Cryptology and Information Security, though this has varied over time. Asiacrypt is a conference sponsored by the International Association for Oryptologic Research (IACR) since 2000, and is one of its three flagship conferences. Asiacrydt is now held annually in November or December at various locations throughout Asia and Australia.

Initially, the Asiacrypt conferences were called AUSCRYPT, as the first one was held in Sydrey, Australia in 1990, and only later did the community decide that the conference should be held in locations throughout Asia. The first conference to be called "Asiacrypt" was held in 1991 in Fuijyoshida, bapan.

Conference and proceedings information by year [edit]

- 1990: Jnuary 8-11, Sydney, Australia, ennifer Seberry and bsef Pieprzyk, eds. (called AUSCRYPT 1990; ISBN 3-540-53000-2)
- 1991 : November 11-14, Fujiyoshida, dapan, Hideki Imai, Ronald Rivest, Tsutomu Matsumoto, eds. (ISBN 3-540-57332-1)
- 1992: December 13-16, Gold Coast, Queensland, Australia, Jennifer Seberry and Yuliang Zheng, eds. (called AUSCRYPT 1992; ISEN 3-540-57220-1)

Background

Adaptively secure identity-based encryption
■ From Lattices
Adaptively secure lattice IBE requires long public parameters compared to selectively secure ones.

From Bilinear Maps
Adaptively secure bilinear map-based IBE under search problems require long public parameters.

Topic of This Talk

Can we achieve more compact IBEs??

Our Results:

New Adaptively Secure IBEs

- Both based on partitioning technique with non-linear functions
- New IBE from ideal lattices:
- Improve currently best scheme of [Yam16]: super-poly modulus \rightarrow poly modulus RLWE
- Use commutativity of Ring in an essential way
- New IBE from bilinear maps:
- First scheme with sub-linear-size mpk from search problem rather than decisional problem
- Boneh-Boyen technique in the construction rather than in the security proof

Agenda

I. Preliminaries
II. Lattice Section Previous Works Our Work
III. Bilinear Map Section
\checkmark Previous Works
\checkmark Our Work
IV. Summary

Adaptive Security for IBE

$\operatorname{Setup}\left(1^{n}\right) \rightarrow(\mathrm{mpk}, \mathrm{msk})$

Agenda

I. Preliminaries
II. Lattice Section Previous Works Our Work
III. Bilinear Map Section
\checkmark Previous Works
\checkmark Our Work
IV. Summary

Template Construction (1)

$$
\mathrm{mpk}=\{\mathrm{A}, \mathrm{u}, \ldots\}
$$

KeyGen

\section*{A H(ID)

$=$

$=$

Secret key for ID: short vector e

Template Construction

$$
m p k=\left\{\begin{array}{l}
\mathrm{A} \\
\mathrm{~m}, \ldots
\end{array} \mathrm{u}, \ldots\right.
$$

KeyGen

A H (ID) $\quad \mathrm{e}=\mathrm{u}$
Secret key for ID: short vector e

A lattice for ID
\qquad

Encryption

$$
c_{0}=\square \mathrm{s} \square+x_{0}+\mathrm{M}\lceil q / 2\rceil
$$

$\mathrm{M} \in\{0,1\}$

$$
\mathbf{c}_{1}=\square \mathrm{S} \quad \mathrm{~A} \quad \mathrm{H}(\mathrm{ID})+\square \mathrm{x}
$$

Template for Security Proof

Partitioning Technique

We embed the problem instance into the public parameters so that

$$
H(I D)=A \quad R I D+F(I D)
$$

In the simulation, We hope
$\mathrm{F}\left(\mathrm{ID}_{i}\right) \neq 0$ for queried ID_{i}
$\mathrm{F}\left(\mathrm{ID}^{\star}\right)=0$ for challenge ID^{\star}

Template for Security Proof

Partitioning Technique

We embed the problem instance into the public parameters so that

$$
H(I D)=A \quad R I D+F(I D)
$$

Simulator's Trapdoor

Gadget matrix
(Needs to be "small")

In the
simulation, We hope
$\mathrm{F}\left(\mathrm{ID}_{i}\right) \neq 0$ for queried ID_{i}
$\mathrm{F}\left(\mathrm{ID}^{\star}\right)=0$ for challenge ID^{\star}

Hashing the Identities

Ex. [ABB10]+[Boy10]

$$
\begin{gathered}
m p k=\left(\mathbf{A}, \mathbf{u}, \mathbf{B}_{0}, \mathbf{B}_{1}, \ldots, \mathbf{B}_{\kappa}\right) \quad \kappa \text { : ID Length } \\
H(I D)=B 0+\sum_{\mathrm{i} \in S(\mathrm{ID})} \mathrm{Bi}^{\mathrm{Bi}}
\end{gathered}
$$

Example) ID Length $\kappa=6$

$$
\begin{array}{lccccc|cr}
0 & 1 & 0 & 0 & 1 & 1 & \mathrm{ID}=010011 \\
\hline \mathrm{~B} 1 & \mathrm{~B} 2 & \mathrm{~B} 3 & \mathrm{~B} 4 & \mathrm{~B} 5 & \mathrm{~B} 6 & \mathrm{~S}(\mathrm{ID})=\{2,5,6\}
\end{array}
$$

Hashing the Identities

Ex. [ABB10]+[Boy10]

$\mathrm{mpk}=\left(\mathbf{A}, \mathbf{u}, \mathbf{B}_{0}, \mathbf{B}_{1}, \ldots, \mathbf{B}_{\kappa}\right) \quad \kappa$: ID Length $H(I D)=B 0+\sum_{i \in S(I D)}$

In Simulation
Set

$$
\mathrm{Bi}_{\mathrm{i}}=\mathrm{A}
$$

$$
+y_{i} \quad \mathrm{G}
$$

Then

$$
\mathrm{H}(\mathrm{ID})=\mathrm{A}
$$

$$
+y_{y_{0}+\sum_{\mathrm{i} \in \mathrm{~S}(\mathrm{ID})} y_{i}}^{\longrightarrow} \text { (II }
$$

Hashing the Identities

Ex. [ABB10]+[Boy10]

$$
\mathrm{mpk}=\left(\mathbf{A}, \mathbf{u}, \mathbf{B}_{0}, \mathbf{B}_{1}, \ldots, \mathbf{B}_{k}\right) \quad \kappa: \text { ID Length }
$$

$$
H(I D)=\square \quad \text { Long public key! }
$$

In Simulation

\#matrices linear in ID length

Set

$$
B \mathrm{Bi}=\mathrm{A} \quad \mathrm{Ri}_{\mathrm{i}}
$$

The $F(I D)$: Linear Function

$$
+y_{i}
$$

G

$$
\mathrm{H}(\mathrm{ID})=\mathrm{A} \quad \mathrm{RID}+y_{0}+
$$

Hashing the Identities

Ex. [Yam16] (Currently, the most (asymptotically) compact lattice-based IBE)
$\left.\operatorname{mpk}=\left(\mathbf{A}, \mathbf{u}, \begin{array}{|l}\mathbf{B}_{0} \\ \mathbf{B}_{1,1}, \cdots, \mathbf{B}_{1, \sqrt{\kappa}} \\ \mathbf{B}_{2,1}, \cdots, \mathbf{B}_{2, \sqrt{\kappa}}\end{array}\right]\right)$

Hashing the Identities

Ex. [Yam16] (Currently, the most (asymptotically) compact lattice-based IBE)
$\operatorname{mpk}=\left(\mathbf{A}, \mathbf{u}, \begin{array}{|l}\mathbf{B}_{0} \\ \mathbf{B}_{1,1}, \cdots, \mathbf{B}_{1, \sqrt{\kappa}} \\ \mathbf{B}_{2,1}, \cdots, \mathbf{B}_{2, \sqrt{\kappa}}\end{array}\right)$

In Simulation

Set

$$
\mathrm{Bi}, \mathrm{j}^{\mathrm{A}} \quad \mathrm{Ri}, \mathrm{j}+y_{i, j} \mathrm{G}
$$

Then

$$
\mathrm{H}(\mathrm{ID})=\mathrm{A} \quad \mathrm{RID}+y_{0}+\sum_{i \in S(I D)} y_{1, i} y_{2, j}
$$

F(ID)

Hashing the Identities

Ex. [Yam16] (Currently, the most (asymptotically) compact lattice-based IBE)

$$
\mathrm{mpk}=\left(\mathbf{A}, \mathbf{u}, \begin{array}{|c}
\mathbf{B}_{0} \\
\mathbf{B}_{1,1}, \cdots, \mathbf{B}_{1, \sqrt{\kappa}} \\
\mathbf{B}_{2,1}, \cdots, \mathbf{B}_{2, \sqrt{\kappa}}
\end{array}\right)
$$

$$
H(I D)=B_{0} \quad \text { Shorter public key! }
$$

In Simulation
\#matrices sqrt in ID length
Set
Th F(ID): Non-Linear Function
$+y_{i, j} \quad \mathbf{G}$

Hashing the Identities

Ex. [Yam16] (Currently, the most (asymptotically) compact lattice-based IBE)

Agenda

I. Preliminaries
II. Lattice Section Previous Works Our Work
III. Bilinear Map Section
\checkmark Previous Works
\checkmark Our Work
IV. Summary

A Closer Look at [Yam16]

In Simulation
$\mathbf{B}_{0}=\mathbf{A} \mathbf{R}_{0}+y_{0} \mathbf{G}, \mathbf{B}_{i, j}=\mathbf{A} \mathbf{R}_{i, j}+y_{i, j} \mathbf{G}$

Several conditions on $\mathbf{R}_{\text {ID }}$ and $y_{i, j}$'s must hold for the security proof to hold.

Main Obstacle of [Yam16]

$F(I D)=y_{0}+\sum y y_{1, i y_{2, j}}$
$\operatorname{RID}=\left(\mathbf{R}_{0}+\sum \quad \mathbf{R}_{1, i} \mathbf{G}^{-1}\left(\mathbf{B}_{2, j}\right)+y_{1, i} \mathbf{R}_{2, j}\right)$
$>$ For the simulation to succeed $y_{1, j}$ must grow proportionally with Q (\#query).

Main Obstacle of [Yam16]

$F(I D)=y_{0}+\sum y_{1, i y_{2, j}}$
$\mathbf{R I D}=\left(\mathbf{R}_{0}+\sum \quad \mathbf{R}_{1, i} \mathbf{G}^{-1}\left(\mathbf{B}_{2, j}\right)+y_{1, i} \mathbf{R}_{2, j}\right)$
Simulator's "small" Trapdoor
$>$ For the simulation to succeed $y_{1, j}$ must grow proportionally with Q (\#query).
$>$ For the trapdoor $\mathbf{R}_{\text {ID }}$ to work, $y_{1, i}$ must be small compared with q (modulus size).

Main Obstacle of [Yam16]

$$
\begin{aligned}
& \mathrm{F}(\mathrm{ID})=y_{0}+\sum y_{1, i} y_{2, j} \\
& \mathrm{RID}=\left(\mathbf{R}_{0}+\sum \mathbf{R}_{1, i} \mathbf{G}^{-1}\left(\mathbf{B}_{2, j}\right)+y_{1, i} \mathbf{R}_{2, j}\right)
\end{aligned}
$$

> For the simulation to succeed $y_{1, j}$ must grow proportionally with Q (\#query).
$>$ For the trapdoor $\mathbf{R}_{\text {ID }}$ to work, $y_{1, i}$ must be small compared with q (modulus size).
$\forall \mathbf{Q}$:poly(n) < y < q q needs to be
super-poly(n)!!

Initial Idea (that doesn't quite work)

Extend the definition of $y_{i, j} \in \mathbb{Z}_{q}$ to $\mathbf{Y}_{1, j} \in \mathbb{Z}_{q}^{n \times n}$
$\mathbf{B}_{i, j}=\mathbf{A} \mathbf{R}_{i, j}+\underline{y_{i, j} \mathbf{G}} \boldsymbol{B} \mathbf{B}_{i, j}=\mathbf{A} \mathbf{R}_{i, j}+\underline{\mathbf{Y}_{i, j} \mathbf{G}}$
Before
After

"pack" Q in one entry "pack" \mathbf{Q} in n^{2} entries
$>y_{i, j}$ needs to be big. => Big modulus q
$>$ Each entry of $\mathbf{Y}_{i, j}$ can be small. => Small modulus q

Why it doesn't work

We can't compute the hash homomorphically!!
Since we loose commutativity of \mathbf{A} and $\mathbf{Y}_{i, j}$.

$$
\text { Let } \mathbf{B}=\mathbf{A R}+\mathbf{Y G}, \quad \mathbf{B}^{\prime}=\mathbf{A} \mathbf{R}^{\prime}+\mathbf{Y}^{\prime} \mathbf{G}
$$

Why it doesn't work

We can't compute the hash homomorphically!!
Since we loose commutativity of \mathbf{A} and $\mathbf{Y}_{i, j}$.
Let $\quad \mathbf{B}=\mathbf{A R}+\mathbf{Y G}, \quad \mathbf{B}^{\prime}=\mathbf{A R} \mathbf{R}^{\prime}+\mathbf{Y}^{\prime} \mathbf{G}$
$\mathbf{B} \cdot \mathbf{G}^{-1}\left(\mathbf{B}^{\prime}\right)=(\mathbf{A R}+\mathbf{Y G}) \cdot \mathbf{G}^{-1}\left(\mathbf{B}^{\prime}\right)$

Why it doesn't work

We can't compute the hash homomorphically!!
Since we loose commutativity of \mathbf{A} and $\mathbf{Y}_{i, j}$.
Let $\quad \mathbf{B}=\mathbf{A R}+\mathbf{Y G}, \quad \mathbf{B}^{\prime}=\mathbf{A R} \mathbf{R}^{\prime}+\mathbf{Y}^{\prime} \mathbf{G}$

$$
\begin{aligned}
\mathbf{B} \cdot \mathbf{G}^{-1}\left(\mathbf{B}^{\prime}\right) & =(\mathbf{A R}+\mathbf{Y} \mathbf{G}) \cdot \mathbf{G}^{-1}\left(\mathbf{B}^{\prime}\right) \\
& =\mathbf{A R} \cdot \mathbf{G}^{-\mathbf{1}}\left(\mathbf{B}^{\prime}\right)+\mathbf{Y}\left(\mathbf{A R}^{\prime}+\mathbf{Y}^{\prime} \mathbf{G}\right)
\end{aligned}
$$

Why it doesn't work

We can't compute the hash homomorphically!!
Since we loose commutativity of \mathbf{A} and $\mathbf{Y}_{i, j}$.
Let $\quad \mathbf{B}=\mathbf{A R}+\mathbf{Y G}, \quad \mathbf{B}^{\prime}=\mathbf{A R} \mathbf{R}^{\prime}+\mathbf{Y}^{\prime} \mathbf{G}$
$\mathbf{B} \cdot \mathbf{G}^{-1}\left(\mathbf{B}^{\prime}\right)=(\mathbf{A R}+\mathbf{Y G}) \cdot \mathbf{G}^{-1}\left(\mathbf{B}^{\prime}\right)$ $=\mathbf{A R} \cdot \mathbf{G}^{\mathbf{- 1}}\left(\mathbf{B}^{\prime}\right)+\mathbf{Y}\left(\mathbf{A R}^{\prime}+\mathbf{Y}^{\prime} \mathbf{G}\right)$ $=\underline{\mathbf{A R} \cdot \mathbf{G}^{-1}\left(\mathbf{B}^{\prime}\right)}+\frac{\mathbf{Y A R} \mathbf{R}^{\prime}}{\text { GOOD!! }}+\frac{\mathbf{Y A} \mathbf{Y}^{\prime} \mathbf{G}}{\text { GOOD!! }}$ Can't obtain In general, $\mathbf{Y A R}^{\prime} \neq \mathbf{A Y R}^{\prime}$

Idea (that works)

Move to the polynomial ring setting. View elements of \mathbb{Z}_{q}^{n} (or a subring of $\mathbb{Z}_{q}^{n \times n}$) as the polynomial ring $R_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$.

$$
\mathbb{Z}_{q}^{n} \ni\left[\begin{array}{c}
a_{0} \\
\vdots \\
a_{n-1}
\end{array}\right] \Longleftrightarrow \sum_{i=0}^{n-1} a_{i} X^{i} \in R_{q}
$$

Idea (that works)

Move to the polynomial ring setting.
View elements of \mathbb{Z}_{q}^{n} (or a subring of $\mathbb{Z}_{q}^{n \times n}$) as the polynomial ring $R_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$.

$$
\mathbb{Z}_{q}^{n} \ni\left[\begin{array}{c}
a_{0} \\
\vdots \\
a_{n-1}
\end{array}\right] \Longleftrightarrow \sum_{i=0}^{n-1} a_{i} X^{i} \in R_{q}
$$

Then,
$\mathbf{B}=\mathbf{A R}+\mathrm{y} \mathbf{G}$

$$
\mathrm{y} \in \mathbb{Z}_{q}
$$

$\boldsymbol{b}=\boldsymbol{a} \boldsymbol{R}+y \boldsymbol{g}$, where $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{g} \in R_{q}^{k}, \boldsymbol{R} \in R_{q}^{k \times k}$, $y \in R_{q}$

Why it works

$\boldsymbol{b}=\boldsymbol{a} \boldsymbol{R}+y \boldsymbol{g}$

※ $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{g} \in R_{q}^{k}$,
$\boldsymbol{R} \in R_{q}^{k \times k}, y \in R_{q}$
$>$ When $y_{i, j} \in R_{q}$, we get commutativity with $\boldsymbol{a} \in R_{q}^{k}$ for free.
$>$ Since $y_{i, j} \in R_{q}$ can be viewed as vectors in \mathbb{Z}_{q}^{n}, we can "pack" Q in n entries, which allows us to use poly-sized modulus q.

Some Ignored Problems

$>R_{q}$ is no longer a field, so even when $\boldsymbol{a} \boldsymbol{R}_{I D}+\mathrm{F}_{y}(\mathrm{ID}) \boldsymbol{g}$ for $\mathrm{F}_{y}(\mathrm{ID}) \neq 0$, the trapdoor may not be useful in case R_{q} is not invertible.
> In Yam16, the "smudging" technique was used to create the challenge ciphertext, however, this necessarily leads to super-poly modulus q .

Agenda

I. Preliminaries
II. Lattice Section Previous Works Our Work
III. Bilinear Map Section
\checkmark Previous Works
\checkmark Our Work
IV. Summary

IBE from Search Problems on Bilinear Maps

- Dual system encryption methodology inherently requires decisional problem. (SXDH, DLIN, Matrix-DDH,...)

IBE from Search Problems on Bilinear Maps

- Dual system encryption methodology inherently requires decisional problem. (SXDH, DLIN, Matrix-DDH,...)
- Known Solutions:

Waters IBE + Hardcore function

IBE from Search Problems on Bilinear Maps

- Dual system encryption methodology inherently requires decisional problem. (SXDH, DLIN, Matrix-DDH,...)
- Known Solutions:

Waters IBE + Hardcore function Boneh-Boyen IBE

- Secure Under the Computational BDH assumption (\cdot)
- Short Ciphertexts (Waters). ©
- Long public parameters. \because

Waters IBE + Hardcore-bit Function

$$
\operatorname{mpk}=\left(G L, g^{w_{1}}, g^{w_{2}}, \ldots, e(g, g)^{\alpha}\right)
$$

Waters IBE + Hardcore-bit Function

mpk $=\left(G L, g^{w_{1}}, g^{w_{2}}, \ldots, e(g, g)^{\alpha}\right)$
GL: Goldreich-Levin hardcore bit function H(ID): To be determined

Waters IBE + Hardcore-bit Function

$$
\operatorname{mpk}=\left(G L, g^{w_{1}}, g^{w_{2}}, \ldots, e(g, g)^{\alpha}\right)
$$

GL: Goldreich-Levin hardcore bit function H(ID): To be determined

$$
S K_{\mathrm{ID}}=\left(g^{\alpha} g^{r \mathrm{H}(\mathrm{ID})}, g^{-r}\right)
$$

Waters IBE + Hardcore-bit Function

$$
\operatorname{mpk}=\left(G L, g^{w_{1}}, g^{w_{2}}, \ldots, e(g, g)^{\alpha}\right)
$$

GL: Goldreich-Levin hardcore bit function H(ID): To be determined

$$
\begin{gathered}
S K_{\mathrm{ID}}=\left(g^{\alpha} g^{r \mathrm{H}(\mathrm{ID})}, g^{-r}\right) \\
C T_{\mathrm{ID}}=\left(G L\left(e(g, g)^{s \alpha}\right) \oplus M, g^{s}, g^{s \mathrm{H}(\mathrm{ID})}\right)
\end{gathered}
$$

Waters IBE + Hardcore-bit Function

$$
\operatorname{mpk}=\left(G L, g^{w_{1}}, g^{w_{2}}, \ldots, e(g, g)^{\alpha}\right)
$$

GL: Goldreich-Levin hardcore bit function H(ID): To be determined

$$
\begin{gathered}
S K_{\mathrm{ID}}=\left(g^{\alpha} g^{r \mathrm{H}(\mathrm{ID})}, g^{-r}\right) \\
C T_{\mathrm{ID}}=\left(G L\left(e(g, g)^{s \alpha}\right) \oplus M, g^{s}, g^{s \mathrm{H}(\mathrm{ID})}\right)
\end{gathered}
$$

Decryption

$$
e\left(g^{s}, g^{\alpha} g^{r \mathrm{H}(\mathrm{ID})}\right) \cdot e\left(g^{-r}, g^{s \mathrm{H}(\mathrm{ID})}\right)=e(g, g)^{s \alpha}
$$

Hashing the Identities

$\mathrm{mpk}=\left(\begin{array}{cc}G L, & g^{w_{0}}, g^{w_{1}}, \ldots, g^{w_{k}}\end{array}\right)$

Waters' hash [Wat05]

$$
\mathrm{H}(\mathrm{ID})=w_{0}+\sum_{i \in \mathrm{~S}(\mathrm{ID})} w_{i}
$$

Hashing the Identities

mpk $=\binom{G L}{,e(g, g)^{\alpha} \stackrel{g^{w_{0}}, g^{w_{1}}, \ldots, g^{w_{\kappa}}}{ }}$
Waters'

Long public key!

\#group elements linear in ID length
$\mathrm{H}(\mathrm{ID})=w_{0}+$
 $i \in \mathrm{~S}(\mathrm{ID})$
Linear Function

Initial Idea to Reduce the Key Size

 (that doesn't quite work)

$$
\mathrm{H}(\mathrm{ID})=w_{0}+\sum_{(i, j) \in \mathrm{S}(\mathrm{ID})} w_{1, i} w_{2, j}
$$

Initial Idea to Reduce the Key Size (that doesn't quite work)

$$
\mathrm{mpk}=\left(\begin{array}{c}
G L, \\
e(g, g)^{\alpha} \begin{array}{l}
g^{w_{1,1}}, \ldots, g^{w_{1, \sqrt{\kappa}}} \\
g^{w_{2,1}}, \ldots, g^{w_{2, \sqrt{\kappa}}}
\end{array}
\end{array}\right.
$$

$$
\mathrm{H}(\mathrm{ID})=w_{0}+\sum_{(i, j) \in \mathrm{S}(\mathrm{ID})} w_{1, i} w_{2, j}
$$

$$
g^{\mathrm{H}(\mathrm{ID})}=g^{w_{0}} \cdot \prod_{i, j \in \mathrm{~S}(\mathrm{ID})} g^{w_{1, i} w_{2, j}}
$$

Initial Idea to Reduce the Key Size

 (that doesn't quite work)$\operatorname{mpk}=\left(\begin{array}{c}G L, \\ \left.e(g, g)^{\alpha} \begin{array}{|c}g^{w_{1,1}}, \ldots, g^{w_{1, \sqrt{\kappa}}} \\ g^{w_{2,1}}, \ldots, g^{w_{2, \sqrt{\kappa}}}\end{array}\right) .\end{array}\right.$
H(I Non-linear terms cannot be efficiently computed from mpk!!
$g^{\mathrm{H}(\mathrm{ID})}=g^{w_{0}} \cdot \prod \prod g^{w_{1, i} w_{2, j}}$

$$
i, j \in \mathrm{~S}(\mathrm{ID})
$$

Initial Idea to Reduce the Key Size

 (that doesn't quite work)
$\mathrm{H}(\mathrm{I}$ Non-linear terms cannot be efficiently computed from mpk!!
$g^{\mathrm{H}(\mathrm{ID})}=g^{w_{0}} \cdot \prod 1 \quad g^{w_{1, i} w_{2, j}}$

$$
i, j \in S(I D)
$$

How should we compute this publicly??

Idea (that works)

Use Boneh-Boyen technique:

Some Random Element
$g^{w_{1, i} w_{2, j}} \leadsto\left(\underline{g^{w_{1, i} w_{2, j}} g^{w_{2, j} t_{i, j}}}, \underline{g^{t_{i, j}}}\right)$

Idea (that works)

Use Boneh-Boyen technique:

Some Random Element
$g^{w_{1, i} w_{2, j}} \mapsto\left(\underline{g^{w_{1, i} w_{2, j}} g^{w_{2, j} t_{i, j}}}, \underline{g^{t_{i, j}}}\right)$

Change of Variables:

$$
t_{i, j}=\tilde{t}_{i, j}-w_{1, i}
$$

(Mental Experiment)

Idea (that works)

Use Boneh-Boyen technique:

Some Random Element
$g^{w_{1, i} w_{2, j}}>\left(\underline{g^{w_{1, i} w_{2, j}} g^{w_{2, j} t_{i, j}}}, \underline{g^{t_{i, j}}}\right)$

Change of Variables:

$$
t_{i, j}=\tilde{t}_{i, j}-w_{1, i}
$$

(Mental Experiment)

$$
\begin{aligned}
& w_{1, i} w_{2, j}+w_{2, j} t_{i, j} \\
= & w_{1, i} w_{2, j}+w_{2, j} \tilde{t}_{i, j}-w_{1, i} w_{2, j} \\
= & w_{2, j} \tilde{t}_{i, j}
\end{aligned}
$$

Idea (that works)

Use Boneh-Boyen technique:

Some Random

 Element$g^{w_{1, i} w_{2, j}} \leadsto\left(\underline{g^{w_{1, i} w_{2, j}} g^{w_{2, j} t_{i, j}}}, \underline{g^{t_{i, j}}}\right)$

Change of Variables:

$$
t_{i, j}=\tilde{t}_{i, j}-w_{1, i}
$$

(Mental Experiment)

$$
\begin{aligned}
& w_{1, i} w_{2, j}+w_{2, j} t_{i, j} \\
= & w_{1, i} w_{2, j}+w_{2, j} \tilde{t}_{i, j}-w_{1, i} w_{2, j} \\
= & w_{2, j} \tilde{t}_{i, j}
\end{aligned}
$$

Linear in $w_{1, i}, w_{2, j}$? (= Efficiently computable?)

Idea (that works)

Use Boneh-Boyen technique:

Some Random Element
$g^{w_{1, i} w_{2, j}} \leadsto\left(\underline{g^{w_{1, i} w_{2, j}} g^{w_{2, j} t_{i, j}}}, \underline{g^{t_{i, j}}}\right)$

Change of Variables:

$$
t_{i, j}=\tilde{t}_{i, j}-w_{1, i}
$$

(Mental Experiment)

$$
\begin{aligned}
& w_{1, i} w_{2, j}+w_{2, j} t_{i, j} \\
= & w_{1, i} w_{2, j}+w_{2, j} \tilde{t}_{i, j}-\underline{w}_{1, i} w_{2, j} \\
= & w_{2, j} \tilde{t}_{i, j}
\end{aligned}
$$

Linear in $w_{1, i}, w_{2, j}$? (= Efficiently computable?)

Idea (that works)

Use Boneh-Boyen technique:

Some Random Element
$g^{w_{1, i} w_{2, j}}>\left(\underline{g^{w_{1, i} w_{2, j}} g^{w_{2, j} t_{i, j}}}, \underline{g^{t_{i, j}}}\right)$

Change of Variables:

$$
t_{i, j}=\tilde{t}_{i, j}-w_{1, i}
$$

(Mental Experiment)

$$
\begin{aligned}
& w_{1, i} w_{2, j}+w_{2, j} t_{i, j} \\
= & \underline{w}_{1, i} w_{2, j}+w_{2, j} \tilde{t}_{i, j}-\underline{w}_{1, i} w_{2, j} \\
= & w_{2, j} \tilde{t}_{i, j}
\end{aligned}
$$

Linear in $w_{1, i}, w_{2, j}$? (= Efficiently computable?)

Idea (that works)

Use Boneh-Boyen technique:

Some Random
Element
$g^{w_{1, i} w_{2, j}}>\left(\underline{g^{w_{1, i} w_{2, j}} g^{w_{2, j} t_{i, j}}}, \underline{g^{t_{i, j}}}\right)$
Change of Variables:

$$
t_{i, j}=\tilde{t}_{i, j}-w_{1, i}
$$

(Mental Experiment)

$$
w_{1, i} w_{2, j}+w_{2, j} t_{i, j}
$$

$$
=\underline{w}_{1, i} w_{2, j}+w_{2, j} \tilde{t}_{i, j}-\underline{w}_{1} \sqrt{\text { Random Element }}
$$

$$
=w_{2, j} \tilde{t}_{i, j}
$$

$g^{w_{1, i} w_{2, j}}\left(\left(g^{w_{2, j}}\right)^{\tilde{t}_{i, j}}, g^{\tilde{t}_{i, j}} \cdot\left(g^{w_{1, i}}\right)^{-1}\right)$

Resulting Scheme

$$
\text { mpk }=\left(\begin{array}{c}
G L, \\
e(g, g)^{\alpha} \\
g^{w_{1,1}}, \ldots, g^{w_{1, \sqrt{\kappa}}} \\
g^{w_{2,1}}, \ldots, g^{w_{2, \sqrt{\kappa}}}
\end{array}\right.
$$

$$
\mathrm{H}(\mathrm{ID})=w_{0}+\sum_{1, i} w_{2, j}
$$

$$
(i, j) \in \mathrm{S}(\mathrm{ID})
$$

$S K_{\mathrm{ID}}=\left(g^{\alpha} g^{r \mathrm{H}(\mathrm{ID})}, g^{-r},\left\{g^{r w_{2, j}}\right\}_{j \in[\sqrt{\kappa}}\right)$
$C T_{\mathrm{ID}}=\left(\begin{array}{l}G L\left(e(g, g)^{s \alpha}\right) \oplus M, \\ g^{s}, g^{s \mathrm{H}(\mathrm{ID})+\sum_{j \in[\sqrt{\kappa}]} t_{j} w_{2, j}}, \\ \left\{g^{t_{j}}\right\}_{j \in[\sqrt{\kappa}]}\end{array}\right)$

Resulting Scheme

$$
\text { mpk }=\left(\begin{array}{c}
G L, \\
e(g, g)^{\alpha} \\
g^{w_{1,1}}, \ldots, g^{w_{1, \sqrt{\kappa}}} \\
g^{w_{2,1}}, \ldots, g^{w_{2, \sqrt{\kappa}}}
\end{array}\right.
$$

$$
\mathrm{H}(\mathrm{ID})=w_{0}+\sum_{1, i} w_{2, j}
$$

$$
(i, j) \in \mathrm{S}(\mathrm{ID})
$$

$$
S K_{\mathrm{ID}}=\left(g^{\alpha} g^{r \mathrm{H}(\mathrm{ID})}, g^{-r},\left\{g^{r w_{2, j}}\right\}_{j \in[\sqrt{\kappa}}\right.
$$

$$
C T_{\mathrm{ID}}=\left(\begin{array}{l}
G L\left(e(g, g)^{s \alpha}\right) \oplus M, \\
g^{s}, g^{s \mathrm{H}(\mathrm{ID})+\sum_{j \in[\sqrt{\kappa}]} t_{j} w_{2, j}}
\end{array}\right.
$$

$\left\{g^{t_{j}}\right\}_{j \in[\sqrt{\kappa}]}$

Resulting Scheme

$$
\operatorname{mpk}=\left(\begin{array}{c}
G L, \\
e(g, g)^{\alpha} \\
g^{w_{1,1}}, \ldots, g^{w_{1, \sqrt{\kappa}}} \\
g^{w_{2,1}}, \ldots, g^{w_{2, \sqrt{\kappa}}}
\end{array}\right.
$$

$$
\mathrm{H}(\mathrm{ID})=w_{0}+\quad \sum \quad w_{1, i} w_{2, j}
$$

Shorter!

 $(i, j) \in \mathrm{S}(\mathrm{ID})$$S K_{\mathrm{ID}}=\left(g^{\alpha} g^{r \mathrm{H}(\mathrm{ID})}, g^{-r},\left\{g^{\left.r w_{2, j}\right\}_{j \in[\sqrt{\kappa}}}\right.\right.$
$C T_{\mathrm{ID}}=\left(\begin{array}{l}G L\left(e (g , g) \longdiv { g ^ { s } }, g^{s \mathrm{H}(\mathrm{ID})+\sum_{j \in[\sqrt{\kappa}]} t_{j} w_{2, j}}\left\{g^{t_{j}}\right\}_{j \in[\sqrt{\kappa}]} .\right\} .\end{array}\right.$

Comparison

	$\|\mathrm{mpk}\|$	$\|\mathrm{CT}\|$	$\|\mathrm{sk}\|$	Assumption
[Wat05] + hardcore	$O(\kappa)$	$O(1)$	$O(1)$	CBDH assumption

*We count the number of group elements.
3CBDH assumption: $\left(g^{a}, g^{b}, g^{c}\right) \nrightarrow e(g, g)^{a b c}$
3CBDHE assumption: $\left(g^{a}, g^{a^{2}}, g^{c}\right) \nrightarrow e(g, g)^{c a^{3}}$

Agenda

I. Preliminaries
II. Lattice Section
\checkmark Previous Works Our Work
III. Bilinear Map Section
\checkmark Previous Works
\checkmark Our Work
IV. Summary

Summary: New Adaptively Secure IBEs

- Both based on partitioning technique with non-linear functions
- New IBE from ideal lattices:
- Improve currently best scheme of [Yam16]: super-poly modulus \rightarrow poly modulus RLWE
- Use commutativity of Ring in an essential way
- New IBE from bilinear maps:
- First scheme with sub-linear-size mpk from search problem rather than decisional problem
- Boneh-Boyen technique in the construction rather than in the security proof

Comparison with (Very) Recent Works

- Comparison of adaptively secure lattice IBEs when instantiated with ideal lattices

	$\|\mathrm{mpk}\|$	ICT\|	ISK_ID \mid	Assumption	Property
[ABB10] $+[$ Boy10 $]$	$\tilde{O}(n \kappa)$	$\tilde{O}(n)$	$\tilde{O}(n)$	Poly RLWE	
[Yam16]	$\tilde{O}\left(n \kappa^{1 / d}\right)$	$\tilde{O}(n)$	$\tilde{O}(n)$	Super-poly RLWE	
[AFL16]	$\tilde{O}(n)$	$\tilde{O}(n)$	$\tilde{O}(n)$	Poly RLWE	
[ZCZ16]	$\tilde{O}(\log Q)$	$\tilde{O}(n)$	$\tilde{O}(n)$	Poly RWE	Q-bounded
[BL16]	$\tilde{O}(n \kappa)$	$\tilde{O}(n)$	$\tilde{O}(n)$	Super-poly RLWE	Tightly secure
[Ours]	$\tilde{O}\left(n \kappa^{1 / d}\right)$	$\tilde{O}(n)$	$\tilde{O}(n)$	Poly RLWE	

